Methylxanthines là gì

1. Andújar I., Recio M.C., Giner R.M., Ríos J.L. Cocoa polyphenols and their potential benefits for human health. Oxid. Med. Cell. Longev. 2012;2012 doi: 10.1155/2012/906252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Gu Y., Yu S., Lambert J.D. Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice. Eur. J. Nutr. 2013 doi: 10.1007/s00394-013-0510-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Redovniković I.R., Delonga K., Mazor S., Dragović-Uzelac V., Caric M., Vorkapic- Furac J. Polyphenolic content and composition, and antioxidative activity of different cocoa liquors. Czech J. Food Sci. 2009;27:330–337. [Google Scholar]

4. Tzounis X., Rodriguez-Mateos A., Vulevic J., Gibson G.R., Kwik-Uribe C., Spencer J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 2011;93:62–72. doi: 10.3945/ajcn.110.000075. [PubMed] [CrossRef] [Google Scholar]

5. Hayek N. Chocolate, gut microbiota, and human health. Front. Pharmacol. 2013;4 doi: 10.3389/fphar.2013.00011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. [PubMed] [CrossRef] [Google Scholar]

7. Sotelo A., Soleri D., Wacher C., Sánchez-Chinchillas A., Argote R.M. Chemical and nutritional composition of tejate, a traditional maize and cacao beverage from the Central Valleys of Oaxaca, Mexico. Plant Foods Hum. Nutr. 2012;67:148–155. doi: 10.1007/s11130-012-0281-5. [PubMed] [CrossRef] [Google Scholar]

8. Crown P.L., Emerson T.E., Gu J., Hurst W.J., Pauketat T.R., Ward T. Ritual black drink consumption at Cahokia. Proc. Natl. Acad. Sci. USA. 2012;109:13944–13949. [PMC free article] [PubMed] [Google Scholar]

9. Nehlig A. Is caffeine a cognitive enhancer? J. Alzheimer’s Dis. 2010;2:S85–S94. [PubMed] [Google Scholar]

10. Dórea J.G., da Costa T.H. Is coffee a functional food? Br. J. Nutr. 2005;93:773–782. doi: 10.1079/BJN20051370. [PubMed] [CrossRef] [Google Scholar]

11. Sullivan R.J., Hagen E.H., Hammerstein P. Revealing the paradox of drug reward in human evolution. Proc. Biol. Sci. 2008;275:1231–1241. doi: 10.1098/rspb.2007.1673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Schiffman S.S., Gill J.M., Diaz C. Methylxanthines enhance taste: Evidence for modulation of taste by adenosine receptor. Pharmacol. Biochem. Behav. 1985;22:195–203. doi: 10.1016/0091-3057(85)90377-6. [PubMed] [CrossRef] [Google Scholar]

13. Wright G.A., Baker D.D., Palmer M.J., Stabler D., Mustard J.A., Power E.F., Borland A.M., Stevenson P.C. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science. 2013;339:1202–1204. [PMC free article] [PubMed] [Google Scholar]

14. Trognitz B., Cros E., Assemat S., Davrieux F., Forestier-Chiron N., Ayestas E., Kuant A., Scheldeman X., Hermann M. Diversity of cacao trees in Waslala, Nicaragua: Associations between genotype spectra, product quality and yield potential. PLoS One. 2013;8:e54079. [PMC free article] [PubMed] [Google Scholar]

15. Lo Coco F., Lanuzza F., Micali G., Cappellano G. Determination of theobromine, theophylline, and caffeine in by-products of cupuacu and cacao seeds by high-performance liquid chromatography. J. Chromatogr. Sci. 2007;45:273–275. doi: 10.1093/chromsci/45.5.273. [PubMed] [CrossRef] [Google Scholar]

16. Srdjenovic B., Djordjevic-Milic V., Grujic N., Injac R., Lepojevic Z. Simultaneous HPLC determination of caffeine, theobromine, and theophylline in food, drinks, and herbal produts. J. Chromatogr. Sci. 2008;46:144–149. doi: 10.1093/chromsci/46.2.144. [PubMed] [CrossRef] [Google Scholar]

17. Risner C.H. Simultaneous determination of theobromine, (+)-catechin, caffeine, and (−)-epicatechin in standard reference material baking chocolate 2384, cocoa, cocoa beans, and cocoa butter. J. Chromatogr. Sci. 2008;46:892–899. doi: 10.1093/chromsci/46.10.892. [PubMed] [CrossRef] [Google Scholar]

18. Bruinsma K., Taren D.L. Chocolate: Food or drug? J. Am. Diet. Assoc. 1999;99:1249–1256. doi: 10.1016/S0002-8223(99)00307-7. [PubMed] [CrossRef] [Google Scholar]

19. Baselt R.C. Disposition of Toxic Drugs and Chemicals in Man. Biomedical Publications; Seal Beach, CA, USA: 1982. [Google Scholar]

20. Lelo A., Birkett D.J., Robson R.A., Miners J.O. Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br. J. Clin. Pharmacol. 1986;22:177–182. doi: 10.1111/j.1365-2125.1986.tb05246.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Fredholm B.B., Persson C.G. Xanthine derivatives as adenosine receptor antagonists. Eur. J. Pharmacol. 1982;81:673–676. doi: 10.1016/0014-2999(82)90359-4. [PubMed] [CrossRef] [Google Scholar]

22. Fredholm B.B., Irenius E., Kull B., Schulte G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 2001;61:443–448. doi: 10.1016/S0006-2952(00)00570-0. [PubMed] [CrossRef] [Google Scholar]

23. Johnson I.M., Prakash H., Prathiba J., Raghunathan R., Malathi R. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA. PLoS One. 2012;7:e50019. [PMC free article] [PubMed] [Google Scholar]

24. Gans J.H., Korson R., Cater M.R., Ackerly C.C. Effects of short-term and long-term theobromine administration to male dogs. Toxicol. Appl. Pharmacol. 1980;53:481–496. doi: 10.1016/0041-008X(80)90360-9. [PubMed] [CrossRef] [Google Scholar]

25. Clark N. Caffeine: A user’s guide. Phys. Sports Med. 1997;25:109–110. [Google Scholar]

26. Higdon J.V., Frei B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2006;46:101–123. doi: 10.1080/10408390500400009. [PubMed] [CrossRef] [Google Scholar]

27. Hornfeldt C.S. Chocolate toxicity in dogs. Mod. Vet. Pract. 1987;68:552–554. [Google Scholar]

28. Baggott M.J., Childs E., Hart A.B., de Bruin E., Palmer A.A., Wilkinson J.E., de Wit H. Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology. 2013;228:109–118. doi: 10.1007/s00213-013-3021-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Pendleton M., Brown S., Thomas C., Odle B. Potential toxicity of caffeine when used as a dietary supplement for weight loss. J. Diet. Suppl. 2012;9:293–298. doi: 10.3109/19390211.2012.736460. [PubMed] [CrossRef] [Google Scholar]

30. Sinchai T., Plasen S., Sanvarinda Y., Jaisin Y., Govitrapong P., Morales N.P., Ratanachamnong P., Plasen D. Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo. Neurosci. Lett. 2011;502:65–69. doi: 10.1016/j.neulet.2011.07.026. [PubMed] [CrossRef] [Google Scholar]

31. Arria A.M., O’Brien M.C. The “high” risk of energy drinks. JAMA. 2011;305:600–601. doi: 10.1001/jama.2011.109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Chen J.F., Chern Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: Human and experimental studies. Handb. Exp. Pharmacol. 2011;200:267–310. doi: 10.1007/978-3-642-13443-2_10. [PubMed] [CrossRef] [Google Scholar]

33. McPherson P.S., Kim Y.K., Valdivia H., Knudson C.M., Takekura H., Franzini-Armstrong C., Coronado R., Campbell K.P. The brain ryanodine receptor: A caffeine-sensitive calcium release channel. Neuron. 1991;7:17–25. doi: 10.1016/0896-6273(91)90070-G. [PubMed] [CrossRef] [Google Scholar]

34. Choi O.H., Shamim M.T., Padgett W.L., Daly J.W. Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 1988;43:387–398. doi: 10.1016/0024-3205(88)90517-6. [PubMed] [CrossRef] [Google Scholar]

35. Marangos P.J., Paul S.M., Parma A.M., Goodwin F.K., Syapin P., Skolnick P. Purinergic inhibition of diazepam binding to rat brain (in vitro) Life Sci. 1979;24:851–857. doi: 10.1016/0024-3205(79)90369-2. [PubMed] [CrossRef] [Google Scholar]

36. Hove-Madsen L., Prat-Vidal C., Llach A., Ciruela F., Casadó V., Lluis C., Bayes-Genis A., Cinca J., Franco R. Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovasc. Res. 2006;72:292–302. doi: 10.1016/j.cardiores.2006.07.020. [PubMed] [CrossRef] [Google Scholar]

37. Llach A., Molina C.E., Prat-Vidal C., Fernandes J., Casadó V., Ciruela F., Lluís C., Franco R., Cinca J., Hove-Madsen L. Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. Eur. Heart J. 2011;32:721–729. doi: 10.1093/eurheartj/ehq464. [PubMed] [CrossRef] [Google Scholar]

38. Ciruela F., Casadó V., Rodrigues R.J., Luján R., Burgueño J., Canals M., Borycz J., Rebola N., Goldberg S.R., Mallol J., et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci. 2006;26:2080–2087. doi: 10.1523/JNEUROSCI.3574-05.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Orru M., Bakešová J., Brugarolas M., Quiroz C., Beaumont V., Goldberg S.R., Lluís C., Cortés A., Franco R., Casadó V., et al. Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists. PLoS One. 2011;6:e16088. doi: 10.1371/journal.pone.0016088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Lazarus M., Shen H.Y., Cherasse Y., Qu W.M., Huang Z.L., Bass C.E., Winsky-Sommerer R., Semba K., Fredholm B.B., Boison D., et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J. Neurosci. 2011;31:10067–10075. doi: 10.1523/JNEUROSCI.6730-10.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Kargul B., Ozcan M., Peker S., Nakamoto T., Simmons W.B., Falster A.U. Evaluation of human enamel surfaces treated with theobromine: A pilot study. Oral Health Prev. Dent. 2012;10:275–282. [PubMed] [Google Scholar]

42. Usmani O.S., Belvisi M.G., Patel H.J., Crispino N., Birrell M.A., Korbonits M., Korbonits D., Barnes P.J. Theobromine inhibits sensory nerve activation and cough. FASEB J. 2005;19:231–233. [PubMed] [Google Scholar]

43. Coleman R.A. Purine antagonists in the identification of adenosine-receptors in guinea-pig trachea and the role of purines in non-adrenergic inhibitory neurotransmission. Br. J. Pharmacol. 1980;69:359–366. doi: 10.1111/j.1476-5381.1980.tb07022.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Halfdanarson T.R., Jatoi A. Chocolate as a cough suppressant: Rationale and justification for an upcoming clinical trial. Support. Cancer Ther. 2007;4:119–122. doi: 10.3816/SCT.2007.n.006. [PubMed] [CrossRef] [Google Scholar]

45. Bara A.I., Barley E.A. Caffeine for asthma. Cochrane Database Syst. Rev. 2001 doi: 10.1002/14651858.CD001112. [PubMed] [CrossRef] [Google Scholar]

46. Simons F.E., Becker A.B., Simons K.J., Gillespie C.A. The bronchodilator effect and pharmacokinetics of theobromine in young patients with asthma. J. Allergy Clin. Immunol. 1985;76:703–707. doi: 10.1016/0091-6749(85)90674-8. [PubMed] [CrossRef] [Google Scholar]

47. Pagano R., Negri E., Decarli A., La Vecchia C. Coffee drinking and prevalence of bronchial asthma. Chest. 1988;94:386–389. doi: 10.1378/chest.94.2.386. [PubMed] [CrossRef] [Google Scholar]

48. Zhao J., Gonzalez F., Mu D. Apnea of prematurity: From cause to treatment. Eur. J. Pediatr. 2011;170:1097–1105. doi: 10.1007/s00431-011-1409-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Aranda J.V., Beharry K., Valencia G.B., Natarajan G., Davis J. Caffeine impact on neonatal morbidities. J. Matern. Fetal Neonatal Med. 2010;23:20–23. doi: 10.3109/14767058.2010.517704. [PubMed] [CrossRef] [Google Scholar]

50. Henderson-Smart D.J., Steer P.A. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst. Rev. 2010 doi: 10.1002/14651858.CD000273. [PubMed] [CrossRef] [Google Scholar]

51. Franco R. Coffee and mental health. Aten. Primaria. 2009;41:578–581. doi: 10.1016/j.aprim.2009.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Smit H.J., Gaffan E.A., Rogers P.J. Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology. 2004;176:412–419. doi: 10.1007/s00213-004-1898-3. [PubMed] [CrossRef] [Google Scholar]

53. Grandner M.A., Jackson N., Gerstner J.R., Knutson K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite. 2013;64:71–80. doi: 10.1016/j.appet.2013.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Yang A., Palmer A.A., de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology. 2010;211:245–257. doi: 10.1007/s00213-010-1900-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Costa J., Lunet N., Santos C., Santos J., Vaz-Carneiro A. Caffeine exposure and the risk of Parkinson’s disease: A systematic review and meta-analysis of observational studies. J. Alzheimer’s Dis. 2010;20:S221–S238. [PubMed] [Google Scholar]

56. Maia L., de Mendonca A. Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol. 2002;9:377–382. doi: 10.1046/j.1468-1331.2002.00421.x. [PubMed] [CrossRef] [Google Scholar]

57. Eskelinen M.H., Ngandu T., Tuomilehto J., Soininen H., Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study. J. Alzheimer’sDis. . 2009;16:85–91. [PubMed] [Google Scholar]

58. Pelligrino D.A., Xu H.L., Vetri F. Caffeine and the control of cerebral hemodynamics. J. Alzheimer’s Dis. 2010;20:S51–S62. [PMC free article] [PubMed] [Google Scholar]

59. Klaassen E.B., de Groot R.H., Evers E.A., Snel J., Veerman E.C., Ligtenberg A.J., Jolles J., Veltman D.J. The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology. 2013;64:160–167. doi: 10.1016/j.neuropharm.2012.06.026. [PubMed] [CrossRef] [Google Scholar]

60. Koppelstaetter F., Poeppel T.D., Siedentopf C.M., Ischebeck A., Verius M., Haala I., Mottaghy F.M., Rhomberg P., Golaszewski S., Gotwald T., et al. Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage. 2008;39:492–499. doi: 10.1016/j.neuroimage.2007.08.037. [PubMed] [CrossRef] [Google Scholar]

61. Haller S., Rodriguez C., Moser D., Toma S., Hofmeister J., Sinanaj I., Van De Ville D., Giannakopoulos P., Lovblad K.O. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: A BOLD and perfusion MRI study. Neuroscience. 2013;250:364–371. doi: 10.1016/j.neuroscience.2013.07.021. [PubMed] [CrossRef] [Google Scholar]

62. Han M.E., Kim H.J., Lee Y.S., Kim D.H., Choi J.T., Pan C.S., Yoon S., Baek S.Y., Kim B.S., Kim J.B., et al. Regulation of cerebrospinal fluid production by caffeine consumption. BMC Neuroscience. 2009;10:110. doi: 10.1186/1471-2202-10-110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Wostyn P., van Dam D., Audenaert K., de Deyn P.P. Increased cerebrospinal fluid production as a possible mechanism underlying Caffeine’s protective effect against Alzheimer’s disease. Int. J. Alzheimer’s Dis. 2011;2011 doi: 10.4061/2011/617420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Bond G.S. Effect of various agents on the blood flow through the coronary arteries and veins. J. Exp. Med. 1910;12:575–585. doi: 10.1084/jem.12.5.575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Askanazy S. Deutsches Archiv für klinische Medicin. Vogel Editions; Leipzig, Germany: 1986. Klinisches über Diuretin; pp. 209–230. [Google Scholar]

66. Dock W. The use of theobromine for pain of arteriosclerotic origin. Calif. West. Med. 1926;25:636–638. [PMC free article] [PubMed] [Google Scholar]

67. McGovern T., McDevitt E., Wright I.S. Theobromine sodium salicylate as a vasodilator. J. Clin. Investig. 1936;15:11–16. doi: 10.1172/JCI100749. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Van den Bogaard B., Draijer R., Westerhof B.E., van den Meiracker A.H., van Montfrans G.A., van den Born B.J. Effects on peripheral and central blood pressure of cocoa with natural or high-dose theobromine: A randomized, double-blind crossover trial. Hypertension. 2010;56:839–846. [PubMed] [Google Scholar]

69. Khan N., Monagas M., Andres-Lacueva C., Casas R., Urpí-Sardà M., Lamuela-Raventós R.M., Estruch R. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2012;22:1046–1053. doi: 10.1016/j.numecd.2011.02.001. [PubMed] [CrossRef] [Google Scholar]

70. Neufingerl N., Zebregs Y.E., Schuring E.A., Trautwein E.A. Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: A randomized controlled trial. Am. J. Clin. Nutr. 2013;97:1201–1209. doi: 10.3945/ajcn.112.047373. [PubMed] [CrossRef] [Google Scholar]

71. Fredholm B.B., Lindgren E. The effect of alkylxanthines and other phosphodiesterase inhibitors on adenosine-receptor mediated decrease in lipolysis and cyclic AMP accumulation in rat fat cells. Acta Pharmacol. Toxicol. 1984;54:64–71. doi: 10.1111/j.1600-0773.1984.tb01896.x. [PubMed] [CrossRef] [Google Scholar]

72. Grassi D., Lippi C., Necozione S., Desideri G., Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am. J. Clin. Nutr. 2005;81:611–614. [PubMed] [Google Scholar]

73. Kelly C.J. Effects of theobromine should be considered in future studies. Am. J. Clin. Nutr. 2005;82:486–487. [PubMed] [Google Scholar]

74. Figler R.A., Wang G., Srinivasan S., Jung D.Y., Zhang Z., Pankow J.S., Ravid K., Fredholm B., Hedrick C.C., Rich S.S., et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes. 2011;60:669–679. doi: 10.2337/db10-1070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]