Từ tập X 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có ba chữ số chia hết cho 5

$A_{0}=\left \{ 3,6 \right \}; A_{1}=\left \{1,4,7 \right \};A_{2}=\left \{2,5,8 \right \}$ và $\left \{ 0 \right \}$.
- Chọn 2 ptử thuộc $ A_{0}$ và 1 ptử thuộc $\left \{ 0 \right \}$: có $P_{2}.2!=4 $ số
- Chọn 1 ptử thuộc $ A_{1}$ và $ A_{2}$ và 1 ptử $\left \{ 0 \right \}$: có $C_{3}^{1}.C_{3}^{1}.2!2=36$ số

Cho tập hợp X={1;2;3;4;5;6} Hỏi từ X có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau và chia hết cho 5 ?

A.120.

Nội dung chính Show

B.10

C.20.

Đáp án chính xác

D. 36.

Xem lời giải

I. Lý thuyết Dấu hiệu chia hết cho 5

Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5.

Các số không có chữ số tận cùng là 0 hoặc 5 thì không chia hết cho 5.

Chọn a, có 6 cách chọn

Chọn b, có 5 cách chọn

Chọn c, có 4 cách chọn

Chọn d, có 3 cách chọn

Theo quy tắc nhân , vậy có 1 x 6 x 5x 4 x 3 = 360 số

TH 2 : e=5 , có 1 cách chọn e

Theo quy tắc nhân ta có : 1 x 5 x 5 x 4 x 3 =300 số

Áp dụng quy tắc cộng ta có tất cả: 360 + 300 = 660 số

Đáp án đúng là A. 660

Cho tập A = 1;;2;;3;;4;;5;;6 . Từ tập A có thể lập được bao nhiêu số tự nhiên có bốn chữ số và chia

Để lập được số thỏa mãn yêu cầu bài toán, ta thực hiện ba hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục và chọn chữ số hàng trăm.

+ Chọn chữ số hàng đơn vị: có 1 cách chọn [là chữ số 5].

+ Chọn chữ số hàng chục: có 6 cách chọn [chọn một trong 6 chữ số: 1, 2, 3, 4, 5, 6].

+ Chọn chữ số hàng trăm: có 6 cách chọn [chọn một trong 6 chữ số: 1, 2, 3, 4, 5, 6].

Vậy có thể lập được 1 . 6 . 6 = 36 số tự nhiên gồm ba chữ số, chia hết cho 5 từ các chữ số 1, 2, 3, 4, 5, 6.

Ta cần đếm số các số tự nhiên dạng  , với a;b;c là các số phân biệt thuộc tập X.

Công đoạn 1: Chọn  c ∈ X, để số tự nhiên chia hết cho 5 thì chỉ có 1 cách chọn c [c = 5].

Công đoạn 2: Chọn  a ∈ X\{5} , có 5 cách.

Công đoạn 3: Chọn  b ∈ X\{5;a} , có 4 cách.

Vậy theo quy tắc nhân, số các số tự nhiên thỏa mãn yêu cầu là: 1.5.4 = 20 số.

  Chọn C.

Chủ Đề