Python bytearray thành mảng int

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
34

Kiểm tra giá trị thực¶

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong điều kiện

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
35 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
36 hoặc dưới dạng toán hạng của phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
37 trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 hoặc phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
39 trả về 0 khi được gọi với đối tượng. 1 Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • hằng số được xác định là sai.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    38

  • số không của bất kỳ loại số nào.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    43,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    44,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    45,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    46

  • trình tự và bộ sưu tập trống.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    47,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu sai và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu đúng, trừ khi có quy định khác. [Ngoại lệ quan trọng. các phép toán Boolean
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58 luôn trả về một trong các toán hạng của chúng. ]

Phép toán Boolean —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
61¶

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
62

nếu x sai, thì y, ngược lại x

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

if x is false, then x, else y

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

if x is false, then

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[3]

Notes

  1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false

  2. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất đúng

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    61 has a lower priority than non-Boolean operators, so
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    68 is interpreted as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    69, and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    70 is a syntax error

Comparisons¶

There are eight comparison operations in Python. They all have the same priority [which is higher than that of the Boolean operations]. Comparisons can be chained arbitrarily; for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
71 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
72, except that y is evaluated only once [but in both cases z is not evaluated at all when
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
73 is found to be false]

Bảng này tóm tắt các hoạt động so sánh

Hoạt động

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

strictly less than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75

less than or equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76

strictly greater than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

greater than or equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78

equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79

not equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80

nhận dạng đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81

danh tính đối tượng phủ nhận

Objects of different types, except different numeric types, never compare equal. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 operator is always defined but for some object types [for example, class objects] is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77 operators are only defined where they make sense; for example, they raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 exception when one of the arguments is a complex number

Non-identical instances of a class normally compare as non-equal unless the class defines the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89 method

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the class defines enough of the methods

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93 [in general,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89 are sufficient, if you want the conventional meanings of the comparison operators]

Không thể tùy chỉnh hành vi của các toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81;

Hai thao tác khác có cùng mức độ ưu tiên cú pháp,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99, được hỗ trợ bởi các loại có thể lặp lại hoặc triển khai phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900.

Các loại số — ________ 6901, ________ 6902, ________ 6903¶

Có ba loại số riêng biệt. integers, floating point numbers, and complex numbers. Ngoài ra, Booleans là một kiểu con của số nguyên. Số nguyên có độ chính xác không giới hạn. Floating point numbers are usually implemented using double in C; information about the precision and internal representation of floating point numbers for the machine on which your program is running is available in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
904. Số phức có phần thực và phần ảo, mỗi phần là một số dấu phẩy động. Để trích xuất các phần này từ một số phức z, hãy sử dụng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906. [The standard library includes the additional numeric types
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907, for rationals, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908, for floating-point numbers with user-definable precision. ]

Numbers are created by numeric literals or as the result of built-in functions and operators. Các số nguyên không trang trí [bao gồm cả số hex, bát phân và nhị phân] mang lại số nguyên. Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Việc thêm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
910 vào một chữ số sẽ tạo ra một số ảo [một số phức có phần thực bằng 0] mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để có được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. khi một toán tử số học nhị phân có các toán hạng thuộc các kiểu số khác nhau, thì toán hạng có loại "hẹp hơn" được mở rộng sang toán hạng kia, trong đó số nguyên hẹp hơn dấu phẩy động, hẹp hơn phức hợp. So sánh giữa các số thuộc các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đang được so sánh. 2

Các hàm tạo

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913 có thể được sử dụng để tạo các số thuộc một loại cụ thể

All numeric types [except complex] support the following operations [for priorities of the operations, see Operator precedence ].

Hoạt động

Kết quả

ghi chú

Full documentation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
914

sum of x and y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
915

difference of x and y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
916

product of x and y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

quotient of x and y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
918

floored quotient of x and y

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
919

remainder of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
921

x negated

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
922

x unchanged

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923

absolute value or magnitude of x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
924

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
925

x converted to integer

[3][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
927

x converted to floating point

[4][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
929

a complex number with real part re, imaginary part im. im defaults to zero

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
931

conjugate of the complex number c

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
932

the pair

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
933

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
934

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
935

x to the power y

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
936

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
937

x to the power y

[5]

Notes

  1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    938 is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    940 is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    942 is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    944 is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  2. Not for complex numbers. Thay vào đó hãy chuyển đổi thành float bằng cách sử dụng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    924 nếu thích hợp

  3. Conversion from floating point to integer may round or truncate as in C; see functions

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    947 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    948 for well-defined conversions

  4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number [NaN] and positive or negative infinity

  5. Python defines

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    949 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    950 to be
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55, as is common for programming languages

  6. The numeric literals accepted include the digits

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    953 or any Unicode equivalent [code points with the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954 property]

    See https. //www. unicode. org/Public/14. 0. 0/ucd/extracted/DerivedNumericType. txt for a complete list of code points with the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954 property

All

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 types [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902] also include the following operations

Hoạt động

Kết quả

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
959

x truncated to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
961

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
962

the greatest

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 '-0b100101' s = s.lstrip['-0b'] # remove leading zeros and minus sign return len[s] # len['100101'] --> 6 964

the least

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 >= x

For additional numeric operations see the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
966 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
967 modules

Bitwise Operations on Integer Types¶

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in two’s complement with an infinite number of sign bits

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons; the unary operation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
968 has the same priority as the other unary numeric operations [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
970]

This table lists the bitwise operations sorted in ascending priority

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
971

bitwise or of x and y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
972

bitwise exclusive or of x and y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
973

bitwise and of x and y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
974

x shifted left by n bits

[1][2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
975

x shifted right by n bits

[1][3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
976

the bits of x inverted

Notes

  1. Negative shift counts are illegal and cause a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 to be raised

  2. A left shift by n bits is equivalent to multiplication by

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  3. A right shift by n bits is equivalent to floor division by

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  4. Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation [a working bit-width of

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    980 or more] is sufficient to get the same result as if there were an infinite number of sign bits

Additional Methods on Integer Types¶

The int type implements the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
981 abstract base class . In addition, it provides a few more methods.

int. bit_length[]

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
51

More precisely, if

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 is nonzero, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 is the unique positive integer
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
984 such that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
985. Equivalently, when
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923 is small enough to have a correctly rounded logarithm, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
987. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 is zero, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6

New in version 3. 1

int. bit_count[]

Return the number of ones in the binary representation of the absolute value of the integer. This is also known as the population count. Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

New in version 3. 10

int. to_bytes[length=1 , byteorder='big' , * , signed=False]

Return an array of bytes representing an integer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

The integer is represented using length bytes, and defaults to 1. An

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 is raised if the integer is not representable with the given number of bytes

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array

Đối số đã ký xác định xem phần bù của hai có được sử dụng để biểu diễn số nguyên hay không. Nếu được ký là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và một số nguyên âm được đưa ra, một số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 sẽ xuất hiện. Giá trị mặc định cho đã ký là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

Các giá trị mặc định có thể được sử dụng để biến một số nguyên thành một đối tượng byte đơn một cách thuận tiện. Tuy nhiên, khi sử dụng các đối số mặc định, đừng cố chuyển đổi một giá trị lớn hơn 255, nếu không bạn sẽ nhận được một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
73

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

New in version 3. 2

Changed in version 3. 11. Added default argument values for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
999 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

classmethod int. from_bytes[bytes , byteorder='big' , * , signed=False]

Return the integer represented by the given array of bytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6304 as the byte order value

The signed argument indicates whether two’s complement is used to represent the integer

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
82

New in version 3. 2

Changed in version 3. 11. Added default argument value for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

int. as_integer_ratio[]

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The integer ratio of integers [whole numbers] is always the integer as the numerator and

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 as the denominator

New in version 3. 8

Additional Methods on Float¶

The float type implements the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 abstract base class . float cũng có các phương thức bổ sung sau.

float. as_integer_ratio[]

Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 on infinities and a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 on NaNs

float. is_integer[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the float instance is finite with integral value, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work

float. hex[]

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this representation will always include a leading

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 and a trailing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6313 and exponent

classmethod float. fromhex[s]

Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing whitespace

Note that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 is an instance method, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315 is a class method

A hexadecimal string takes the form

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
0

where the optional

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6316 may by either
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
970,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6319 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6320 are strings of hexadecimal digits, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6321 is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6. 4. 4. 2 of the C99 standard, and also to the syntax used in Java 1. 5 onwards. In particular, the output of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6323 format character or Java’s
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6324 are accepted by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6326 represents the floating-point number
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6327, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
1

Applying the reverse conversion to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328 gives a different hexadecimal string representing the same number

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
2

Hashing of numeric types¶

For numbers

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6331, possibly of different types, it’s a requirement that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6332 whenever
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6333 [see the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6334 method documentation for more details]. For ease of implementation and efficiency across a variety of numeric types [including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907] Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies to all instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907, and all finite instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908. Essentially, this function is given by reduction modulo
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 for a fixed prime
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343. The value of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 is made available to Python as the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6346 attribute of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6347

CPython implementation detail. Currently, the prime used is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6348 on machines with 32-bit C longs and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6349 on machines with 64-bit C longs

Here are the rules in detail

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a nonnegative rational number and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 is not divisible by
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343, define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6354, where
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6355 gives the inverse of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a nonnegative rational number and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 is divisible by
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 [but
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6361 is not] then
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 has no inverse modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 and the rule above doesn’t apply; in this case define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 to be the constant value
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6365

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a negative rational number define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6368. If the resulting hash is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, replace it with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

  • The particular values

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6365 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6372 are used as hash values for positive infinity or negative infinity [respectively]

  • For a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    903 number
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6374, the hash values of the real and imaginary parts are combined by computing
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6375, reduced modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6376 so that it lies in
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6377. Again, if the result is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, it’s replaced with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a rational number,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
3

Iterator Types¶

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration methods

One method needs to be defined for container objects to provide iterable support.

container. __iter__[]

Return an iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. [An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal. ] This method corresponds to the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator protocol

iterator. __iter__[]

Return the iterator object itself. This is required to allow both containers and iterators to be used with the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 statements. This method corresponds to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 slot of the type structure for Python objects in the Python/C API.

iterator. __next__[]

Return the next item from the iterator . If there are no further items, raise the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386 exception. This method corresponds to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6387 slot of the type structure for Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other more specialized forms. The specific types are not important beyond their implementation of the iterator protocol

Once an iterator’s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388 method raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386, it must continue to do so on subsequent calls. Implementations that do not obey this property are deemed broken

Generator Types¶

Python’s generator s provide a convenient way to implement the iterator protocol. If a container object’s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 method is implemented as a generator, it will automatically return an iterator object [technically, a generator object] supplying the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388 methods. More information about generators can be found in the documentation for the yield expression .

Sequence Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395¶

There are three basic sequence types. lists, tuples, and range objects. Additional sequence types tailored for processing of binary data and text strings are described in dedicated sections.

Common Sequence Operations¶

The operations in the following table are supported by most sequence types, both mutable and immutable.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of the same type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99 operations have the same priorities as the comparison operations. Các phép toán
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 [nối] và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 [lặp lại] có cùng mức độ ưu tiên như các phép toán số tương ứng. 3

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6401

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if an item of s is equal to x, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6404

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 if an item of s is equal to x, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6407

the concatenation of s and t

[6][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6408 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6409

equivalent to adding s to itself n times

[2][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410

ith item of s, origin 0

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6411

slice of s from i to j

[3][4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412

slice of s from i to j with step k

[3][5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

length of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6414

smallest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6415

largest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6416

index of the first occurrence of x in s [at or after index i and before index j]

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6417

total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. [For full details see Comparisons in the language reference. ]

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march forward [or backward] even if the underlying sequence is mutated. Trình vòng lặp chỉ kết thúc khi gặp phải một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6418 hoặc một
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386 [hoặc khi chỉ số giảm xuống dưới 0]

Notes

  1. While the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    98 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    99 operations are used only for simple containment testing in the general case, some specialised sequences [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6424] also use them for subsequence testing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    4

  2. Values of n less than

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 are treated as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 [which yields an empty sequence of the same type as s]. Note that items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers; consider

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    5

    What has happened is that

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6427 is a one-element list containing an empty list, so all three elements of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6428 are references to this single empty list. Modifying any of the elements of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6429 modifies this single list. You can create a list of different lists this way

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6

    Further explanation is available in the FAQ entry How do I create a multidimensional list? .

  3. If i or j is negative, the index is relative to the end of sequence s.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6430 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6431 is substituted. But note that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6432 is still
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  4. The slice of s from i to j is defined as the sequence of items with index k such that

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6434. If i or j is greater than
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42. If j is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is greater than or equal to j, the slice is empty

  5. The slice of s from i to j with step k is defined as the sequence of items with index

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6441 such that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6442. In other words, the indices are
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6443,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6444,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6445,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6446 and so on, stopping when j is reached [but never including j]. When k is positive, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413 if they are greater. When k is negative, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6448 if they are greater. If i or j are omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, they become “end” values [which end depends on the sign of k]. Note, k cannot be zero. If k is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, it is treated like
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55

  6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost, you must switch to one of the alternatives below

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6422 objects, you can build a list and use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6453 at the end or else write to an
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6454 instance and retrieve its value when complete

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6423 objects, you can similarly use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6456 or
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6457, or you can do in-place concatenation with a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 object.
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 objects are mutable and have an efficient overallocation mechanism

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6394 objects, extend a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6393 instead

    • for other types, investigate the relevant class documentation

  7. Some sequence types [such as

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6395] only support item sequences that follow specific patterns, and hence don’t support sequence concatenation or repetition

  8. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6463 raises
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 when x is not found in s. Not all implementations support passing the additional arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equivalent to using
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6465, only without copying any data and with the returned index being relative to the start of the sequence rather than the start of the slice

Immutable Sequence Types¶

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence types is support for the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6466 built-in

This support allows immutable sequences, such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 instances, to be used as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 keys and stored in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 instances

Attempting to hash an immutable sequence that contains unhashable values will result in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88

Mutable Sequence Types¶

The operations in the following table are defined on mutable sequence types. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6472 ABC is provided to make it easier to correctly implement these operations on custom sequence types

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any type and value restrictions imposed by s [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 only accepts integers that meet the value restriction
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6474]

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6475

item i of s is replaced by x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6476

slice of s from i to j is replaced by the contents of the iterable t

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6477

same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6478

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6479

the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 are replaced by those of t

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6481

removes the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 from the list

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6483

appends x to the end of the sequence [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6484]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6485

removes all items from s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6486]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6487

creates a shallow copy of s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6488]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6489 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6490

extends s with the contents of t [for the most part the same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6491]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6492

updates s with its contents repeated n times

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6493

inserts x into s at the index given by i [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6494]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6495 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6496

truy xuất mục tại i và cũng xóa mục đó khỏi s

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6497

remove the first item from s where

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410 is equal to x

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6499

reverses the items of s in place

[4]

Notes

  1. t must have the same length as the slice it is replacing

  2. The optional argument i defaults to

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, so that by default the last item is removed and returned

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7301 raises
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 when x is not found in s

  4. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7303 method modifies the sequence in place for economy of space when reversing a large sequence. To remind users that it operates by side effect, it does not return the reversed sequence

  5. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 are included for consistency with the interfaces of mutable containers that don’t support slicing operations [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469].
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 is not part of the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472 ABC, but most concrete mutable sequence classes provide it

    New in version 3. 3.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 methods.

  6. The value n is an integer, or an object implementing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7312. Zero and negative values of n clear the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6408 under Common Sequence Operations .

Lists¶

Lists are mutable sequences, typically used to store collections of homogeneous items [where the precise degree of similarity will vary by application]

class list[[iterable]]

Lists may be constructed in several ways

  • Using a pair of square brackets to denote the empty list.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49

  • Using square brackets, separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7315,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7316

  • Using a list comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7317

  • Using the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7318 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7319

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7320. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7321 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7322 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7323 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7324. If no argument is given, the constructor creates a new empty list,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

Many other operations also produce lists, including the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 built-in

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional method.

sort[* , key=None , reverse=False]

This method sorts the list in place, using only

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail [and the list will likely be left in a partially modified state]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 accepts two arguments that can only be passed by keyword [ keyword-only arguments ].

key specifies a function of one argument that is used to extract a comparison key from each list element [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7329]. The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 means that list items are sorted directly without calculating a separate key value

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7331 utility is available to convert a 2. x style cmp function to a key function

reverse is a boolean value. If set to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence [use

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 to explicitly request a new sorted list instance]

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes [for example, sort by department, then by salary grade]

For sorting examples and a brief sorting tutorial, see Sorting HOW TO .

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 if it can detect that the list has been mutated during a sort

Tuples¶

Tuples are immutable sequences, typically used to store collections of heterogeneous data [such as the 2-tuples produced by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7336 built-in]. Tuples are also used for cases where an immutable sequence of homogeneous data is needed [such as allowing storage in a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 instance]

class tuple[[iterable]]

Tuples may be constructed in a number of ways

  • Using a pair of parentheses to denote the empty tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48

  • Using a trailing comma for a singleton tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7340 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7341

  • Separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7342 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7343

  • Using the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 built-in.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7346

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7347 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7348 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7349 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7350. If no argument is given, the constructor creates a new empty tuple,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7352 is a function call with three arguments, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7353 is a function call with a 3-tuple as the sole argument

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7354 may be a more appropriate choice than a simple tuple object

Ranges¶

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 loops

class range[stop]class range[start , stop[ , step]]

The arguments to the range constructor must be integers [either built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 or any object that implements the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7312 special method]. If the step argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55. If the start argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42. If step is zero,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 is raised

For a positive step, the contents of a range

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 are determined by the formula
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363 where
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7365

For a negative step, the contents of the range are still determined by the formula

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363, but the constraints are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7368

A range object will be empty if

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7369 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7370 are permitted but some features [such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7371] may raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

Range examples

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7

Ranges implement all of the common sequence operations except concatenation and repetition [due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern].

start

The value of the start parameter [or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 if the parameter was not supplied]

stop

The value of the stop parameter

step

The value of the step parameter [or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 if the parameter was not supplied]

The advantage of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type over a regular
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 is that a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 object will always take the same [small] amount of memory, no matter the size of the range it represents [as it only stores the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 values, calculating individual items and subranges as needed]

Range objects implement the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices [see Sequence Types — list, tuple, range ].

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8

Testing range objects for equality with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. [Note that two range objects that compare equal might have different
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes, for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7388 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7389. ]

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define [instead of comparing based on object identity].

New in version 3. 3. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422¶

Textual data in Python is handled with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects, or strings. Strings are immutable sequences of Unicode code points. String literals are written in a variety of ways.

  • Single quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7396

  • Double quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7397

  • Triple quoted.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7398,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7399

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7400

See String and Bytes literals for more about the various forms of string literal, including supported escape sequences, and the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 [“raw”] prefix that disables most escape sequence processing.

Strings may also be created from other objects using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 constructor

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7403

Cũng không có loại chuỗi có thể thay đổi, nhưng có thể sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6453 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6454 để xây dựng chuỗi từ nhiều đoạn một cách hiệu quả

Changed in version 3. 3. For backwards compatibility with the Python 2 series, the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7406 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 prefix.

class str[object='']class str[object=b'' , encoding='utf-8' , errors='strict']

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7409 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7410, which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7411 method, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 falls back to returning
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7413

If at least one of encoding or errors is given, object should be a bytes-like object [e. g.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424]. In this case, if object is a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 [or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] object, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7418 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7419. Otherwise, the bytes object underlying the buffer object is obtained before calling
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7420. See Binary Sequence Types — bytes, bytearray, memoryview and Buffer Protocol for information on buffer objects.

Passing a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 object to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 without the encoding or errors arguments falls under the first case of returning the informal string representation [see also the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7423 command-line option to Python]. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

For more information on the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 class and its methods, see Text Sequence Type — str and the String Methods section below. To output formatted strings, see the Formatted string literals and Format String Syntax sections. In addition, see the Text Processing Services section.

String Methods¶

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization [see

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425, Format String Syntax and Custom String Formatting ] and the other based on C
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle [ printf-style String Formatting ].

The Text Processing Services section of the standard library covers a number of other modules that provide various text related utilities [including regular expression support in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7427 module].

str. capitalize[]

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

str. casefold[]

Trả về một bản sao của chuỗi. Các chuỗi casefolded có thể được sử dụng để so khớp không có vỏ

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429. Since it is already lowercase,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7430 would do nothing to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7432 converts it to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center[width[ , fillchar]]

Return centered in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. count[sub[ , start[ , end]]]

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode[encoding='utf-8' , errors='strict']

Return an encoded version of the string as a bytes object. Default encoding is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7435. errors may be given to set a different error handling scheme. The default for errors is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436, meaning that encoding errors raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7440,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7441 and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7442, see section Error Handlers . For a list of possible encodings, see section Standard Encodings .

By default, the errors argument is not checked for best performances, but only used at the first encoding error. Enable the Python Development Mode , or use a debug build to check errors.

Changed in version 3. 1. Support for keyword arguments added.

Changed in version 3. 9. Các lỗi hiện được kiểm tra trong chế độ phát triển và trong chế độ gỡ lỗi .

str. endswith[suffix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string ends with the specified suffix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

str. expandtabs[tabsize=8]

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7445], one or more space characters are inserted in the result until the current column is equal to the next tab position. [The tab character itself is not copied. ] If the character is a newline [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7446] or return [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447], it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

str. find[sub[ , start[ , end]]]

Return the lowest index in the string where substring sub is found within the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7450 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91

str. format[*args , **kwargs]

Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note

When formatting a number [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 and subclasses] with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type [ex.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7458], the function temporarily sets the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7459 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale to decode
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7462 fields of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7463 if they are non-ASCII or longer than 1 byte, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale is different than the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7459 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type, the function sets temporarily the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7459 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale in some cases.

str. format_map[mapping]

Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7469, except that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7470 is used directly and not copied to a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. This is useful if for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7470 is a dict subclass

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93

New in version 3. 2

str. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7450, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring is not found

str. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. A character
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7477 is alphanumeric if one of the following returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7479,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7480,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7481, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7482

str. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Chữ số bao gồm các ký tự thập phân và chữ số cần xử lý đặc biệt, chẳng hạn như chữ số chỉ số trên tương thích. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a valid identifier according to the language definition, section Identifiers and keywords .

Call

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7492 to test whether string
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7493 is a reserved identifier, such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7494 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7495

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
94

str. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are lowercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

str. isnumeric[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Nonprintable characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space [0x20] which is considered printable. [Note that printable characters in this context are those which should not be escaped when
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 is invoked on a string. It has no bearing on the handling of strings written to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7703 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7704. ]

str. isspace[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there are only whitespace characters in the string and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

A character is whitespace if in the Unicode character database [see

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7707], either its general category is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7708 [“Separator, space”], or its bidirectional class is one of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7709,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7710, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7711

str. istitle[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

str. isupper[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are uppercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
95

str. join[iterable]

Return a string which is the concatenation of the strings in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any non-string values in iterable, including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects. The separator between elements is the string providing this method

str. ljust[width[ , fillchar]]

Return the string left justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. lower[]

Return a copy of the string with all the cased characters 4 converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip[[chars]]

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
96

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7720 for a method that will remove a single prefix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
97

static str. maketrans[x[ , y[ , z]]]

This static method returns a translation table usable for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7721

If there is only one argument, it must be a dictionary mapping Unicode ordinals [integers] or characters [strings of length 1] to Unicode ordinals, strings [of arbitrary lengths] or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. Character keys will then be converted to ordinals

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 in the result

str. partition[sep]

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix[prefix , /]

Nếu chuỗi bắt đầu bằng chuỗi tiền tố, hãy trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7724. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98

New in version 3. 9

str. removesuffix[suffix , /]

If the string ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7725. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99

New in version 3. 9

str. replace[old , new[ , count]]

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind[sub[ , start[ , end]]]

Return the highest index in the string where substring sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

str. rindex[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7728 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring sub is not found

str. rjust[width[ , fillchar]]

Return the string right justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. rpartition[sep]

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any whitespace string is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7732 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 which is described in detail below

str. rstrip[[chars]]

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
630

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7735 for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
631

str. split[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7736 elements]. If maxsplit is not specified or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7738 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7739]. The sep argument may consist of multiple characters [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7740 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7741]. Splitting an empty string with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7742

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
632

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
633

str. splitlines[keepends=False]

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal newlines .

Representation

Description

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7446

Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447

Carriage Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7748

Carriage Return + Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7749 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7750

Line Tabulation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7751 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7752

Form Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7753

File Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7754

Group Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7755

Record Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7756

Next Line [C1 Control Code]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7757

Line Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7758

Paragraph Separator

Changed in version 3. 2.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7749 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7751 added to list of line boundaries.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
634

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
635

For comparison,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7762 gives

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
636

str. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if string starts with the prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. strip[[chars]]

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
637

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
638

str. hoán đổi[]

Trả về một bản sao của chuỗi với các ký tự hoa được chuyển đổi thành chữ thường và ngược lại. Note that it is not necessarily true that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7766

str. title[]

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
639

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
640

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7767 function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
641

str. dịch[bảng]

Trả về bản sao của chuỗi trong đó mỗi ký tự đã được ánh xạ qua bảng dịch đã cho. Bảng phải là một đối tượng thực hiện lập chỉ mục thông qua

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7768, thường là ánh xạ hoặc trình tự. When indexed by a Unicode ordinal [an integer], the table object can do any of the following: return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, to delete the character from the return string; or raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7770 exception, to map the character to itself.

Bạn có thể sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7771 để tạo bản đồ dịch từ ánh xạ ký tự sang ký tự ở các định dạng khác nhau

Xem thêm mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7772 để biết cách tiếp cận linh hoạt hơn đối với ánh xạ ký tự tùy chỉnh

str. trên[]

Trả về một bản sao của chuỗi với tất cả các ký tự viết hoa 4 được chuyển đổi thành chữ hoa. Lưu ý rằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7773 có thể là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7493 chứa các ký tự không có chữ hoa hoặc nếu danh mục Unicode của [các] ký tự kết quả không phải là “Lu” [Chữ cái, chữ hoa], mà là e. g. “Lt” [Thư, tựa đề]

Thuật toán viết hoa được sử dụng được mô tả trong phần 3. 13 của Tiêu chuẩn Unicode

str. zfill[chiều rộng]

Return a copy of the string left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7776 digits to make a string of length width. Tiền tố dấu hiệu hàng đầu [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778] được xử lý bằng cách chèn phần đệm sau ký tự dấu hiệu thay vì trước. Chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
642

Định dạng chuỗi kiểu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426¶

Note

Các thao tác định dạng được mô tả ở đây có nhiều điểm kỳ quặc dẫn đến một số lỗi phổ biến [chẳng hạn như không hiển thị chính xác các bộ dữ liệu và từ điển]. Sử dụng chuỗi ký tự được định dạng mới hơn, giao diện

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425 hoặc chuỗi mẫu . Mỗi lựa chọn thay thế này cung cấp sự đánh đổi và lợi ích của riêng chúng về tính đơn giản, tính linh hoạt và/hoặc khả năng mở rộng.

Các đối tượng chuỗi có một thao tác tích hợp duy nhất. toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7782 [mô-đun]. Điều này còn được gọi là định dạng chuỗi hoặc toán tử nội suy. Cho trước
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 [trong đó định dạng là một chuỗi], thông số kỹ thuật chuyển đổi của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7782 ở định dạng được thay thế bằng 0 hoặc nhiều phần tử giá trị. Hiệu quả tương tự như sử dụng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7785 trong ngôn ngữ C

Nếu định dạng yêu cầu một đối số duy nhất, các giá trị có thể là một đối tượng không phải bộ dữ liệu. 5 Mặt khác, các giá trị phải là một bộ có số mục chính xác được chỉ định bởi chuỗi định dạng hoặc một đối tượng ánh xạ đơn lẻ [ví dụ: từ điển]

Trình xác định chuyển đổi chứa hai hoặc nhiều ký tự và có các thành phần sau, phải xảy ra theo thứ tự này

  1. Ký tự

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7786, đánh dấu sự bắt đầu của trình xác định

  2. Khóa ánh xạ [tùy chọn], bao gồm một chuỗi ký tự trong ngoặc đơn [ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787]

  3. Cờ chuyển đổi [tùy chọn], ảnh hưởng đến kết quả của một số loại chuyển đổi

  4. Minimum field width [optional]. If specified as an

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788 [asterisk], the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier [optional]

  7. Conversion type

When the right argument is a dictionary [or other mapping type], then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
643

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Flag

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7793

The value conversion will use the “alternate form” [where defined below]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7776

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7776 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7797

[a space] A blank should be left before a positive number [or empty string] produced by a signed conversion

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

A sign character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778] will precede the conversion [overrides a “space” flag]

A length modifier [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8201,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203] may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204 is identical to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205

The conversion types are

Conversion

Meaning

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8211

Signed hexadecimal [lowercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Signed hexadecimal [uppercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [uppercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Floating point format. Sử dụng định dạng số mũ viết hoa nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Single character [accepts integer or single character string]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8222

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8224

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786

No argument is converted, results in a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 character in the result

Notes

  1. The alternate form causes a leading octal specifier [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8228] to be inserted before the first digit

  2. The alternate form causes a leading

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 [depending on whether the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8211 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 format was used] to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8233, the output is truncated to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8233 characters

  6. See PEP 237

Since Python strings have an explicit length,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8235 conversions do not assume that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8236 is the end of the string

Changed in version 3. 1.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8237 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8238 conversions.

Binary Sequence Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241¶

The core built-in types for manipulating binary data are

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424. They are supported by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8245 module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects¶

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes[[source[ , encoding[ , errors]]]]

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8246 prefix is added

  • Single quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8247

  • Double quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8248

  • Triple quoted.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8249,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8250

Only ASCII characters are permitted in bytes literals [regardless of the declared source code encoding]. Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 prefix to disable processing of escape sequences. Xem Chuỗi và ký tự byte để biết thêm về các dạng ký tự byte khác nhau, bao gồm các chuỗi thoát được hỗ trợ.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable sequences of integers, with each value in the sequence restricted such that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8252 [attempts to violate this restriction will trigger
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977]. Điều này được thực hiện có chủ ý để nhấn mạnh rằng trong khi nhiều định dạng nhị phân bao gồm các phần tử dựa trên ASCII và có thể được thao tác hữu ích với một số thuật toán hướng văn bản, thì điều này thường không xảy ra đối với dữ liệu nhị phân tùy ý [áp dụng một cách mù quáng các thuật toán xử lý văn bản cho các định dạng dữ liệu nhị phân không phải là

In addition to the literal forms, bytes objects can be created in a number of other ways

  • A zero-filled bytes object of a specified length.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8254

  • From an iterable of integers.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8255

  • Copying existing binary data via the buffer protocol.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8256

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format

classmethod fromhex[string]

This

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 class method returns a bytes object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
644

Changed in version 3. 7.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8258 now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation

hex[[sep[ , bytes_per_sep]]]

Return a string object containing two hexadecimal digits for each byte in the instance

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
645

If you want to make the hex string easier to read, you can specify a single character separator sep parameter to include in the output. By default, this separator will be included between each byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
646

New in version 3. 5

Đã thay đổi trong phiên bản 3. 8.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8259 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers [akin to a tuple], for a bytes object b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260 will be an integer, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 will be a bytes object of length 1. [This contrasts with text strings, where both indexing and slicing will produce a string of length 1]

Việc biểu diễn các đối tượng byte sử dụng định dạng chữ [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8262] vì nó thường hữu ích hơn e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8263. You can always convert a bytes object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8264

Bytearray Objects¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 objects are a mutable counterpart to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects

lớp dải byte[[nguồn[, encoding[, errors]]]]

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8267

  • Creating a zero-filled instance with a given length.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8268

  • From an iterable of integers.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8269

  • Copying existing binary data via the buffer protocol.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8270

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes and bytearray operations described in Bytes and Bytearray Operations .

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format

classmethod fromhex[string]

This

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 class method returns bytearray object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
647

Changed in version 3. 7.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8272 now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex[[sep[ , bytes_per_sep]]]

Return a string object containing two hexadecimal digits for each byte in the instance

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
648

New in version 3. 5

Changed in version 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8259,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8274 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers [akin to a list], for a bytearray object b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260 will be an integer, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 will be a bytearray object of length 1. [This contrasts with text strings, where both indexing and slicing will produce a string of length 1]

The representation of bytearray objects uses the bytes literal format [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8277] since it is often more useful than e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8278. You can always convert a bytearray object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8264

Bytes and Bytearray Operations¶

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of the same type, but with any bytes-like object . Do tính linh hoạt này, chúng có thể được trộn lẫn tự do trong các hoạt động mà không gây ra lỗi. However, the return type of the result may depend on the order of operands.

Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings don’t accept bytes as their arguments. For example, you have to write

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
649

and

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
730

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided when working with arbitrary binary data. These restrictions are covered below

Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may lead to data corruption

The following methods on bytes and bytearray objects can be used with arbitrary binary data

bytes. đếm[phụ[ , . start[, end]]]bytearray.count[sub[ , start[ , end]]]

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix[prefix , /]bytearray. removeprefix[prefix , /]

If the binary data starts with the prefix string, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8280. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
731

The prefix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. removesuffix[suffix , /]bytearray. removesuffix[suffix , /]

If the binary data ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8281. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
732

The suffix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

byte. decode[encoding='utf-8' , errors='strict']bytearray. decode[encoding='utf-8' , errors='strict']

Return a string decoded from the given bytes. Default encoding is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7435. errors may be given to set a different error handling scheme. The default for errors is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436, meaning that encoding errors raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439 and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7442, see section Error Handlers . For a list of possible encodings, see section Standard Encodings .

Theo mặc định, đối số lỗi không được kiểm tra để có hiệu suất tốt nhất mà chỉ được sử dụng ở lỗi giải mã đầu tiên. Enable the Python Development Mode , or use a debug build to check errors.

Note

Passing the encoding argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 allows decoding any bytes-like object directly, without needing to make a temporary bytes or bytearray object.

Đã thay đổi trong phiên bản 3. 1. Đã thêm hỗ trợ cho đối số từ khóa.

Changed in version 3. 9. Các lỗi hiện được kiểm tra trong chế độ phát triển và trong chế độ gỡ lỗi .

bytes. endswith[suffix[ , start[ , end]]]bytearray. endswith[suffix[ , start[ , end]]]

Trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu dữ liệu nhị phân kết thúc bằng hậu tố đã chỉ định, nếu không thì trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. Với bắt đầu tùy chọn, bắt đầu kiểm tra tại vị trí đó. With optional end, stop comparing at that position

The suffix[es] to search for may be any bytes-like object .

bytes. find[sub[ , start[ , end]]]bytearray. find[sub[ , start[ , end]]]

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7450 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
733

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index[sub[ , start[ , end]]]bytearray. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7450, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join[iterable]bytearray. join[iterable]

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any values in iterable that are not bytes-like objects , including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes. maketrans[from , to]static bytearray. maketrans[from , to]

Phương thức tĩnh này trả về một bảng dịch có thể sử dụng cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8299 sẽ ánh xạ từng ký tự từ thành ký tự ở cùng một vị trí thành; . bytes-like objects and have the same length.

New in version 3. 1

byte. phân vùng[sep] ¶ . bytearray.phân vùng[sep]

Tách chuỗi ở lần xuất hiện đầu tiên của sep và trả về 3-bộ chứa phần trước dấu tách, chính dấu tách hoặc bản sao mảng phụ của nó và phần sau dấu tách. Nếu không tìm thấy dấu tách, hãy trả về 3-tuple chứa bản sao của chuỗi ban đầu, theo sau là hai byte trống hoặc đối tượng mảng phụ

Dấu phân cách để tìm kiếm có thể là bất kỳ đối tượng giống như byte .

byte. thay thế[ , mới . [, count]]bytearray.thay thế[ , mới[, count]]

Trả về một bản sao của chuỗi với tất cả các lần xuất hiện của chuỗi cũ được thay thế bằng mới. Nếu số lượng đối số tùy chọn được cung cấp, chỉ những lần xuất hiện đầu tiên được thay thế

Dãy con cần tìm kiếm và sự thay thế của nó có thể là bất kỳ đối tượng giống như byte .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. rfind[sub[ , start[ , end]]]bytearray. rfind[sub[ , start[ , end]]]

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex[sub[ , start[ , end]]]bytearray. rindex[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7728 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition[sep]bytearray. rpartition[sep]

Tách chuỗi ở lần xuất hiện cuối cùng của sep và trả về 3-tuple chứa phần trước dấu tách, chính dấu tách hoặc bản sao mảng phụ của nó và phần sau dấu tách. Nếu không tìm thấy dấu tách, hãy trả về 3-bộ chứa hai byte trống hoặc đối tượng mảng phụ, theo sau là bản sao của chuỗi ban đầu

Dấu phân cách để tìm kiếm có thể là bất kỳ đối tượng giống như byte .

bytes. startswith[prefix[ , start[ , end]]]bytearray. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the binary data starts with the specified prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The prefix[es] to search for may be any bytes-like object .

bytes. translate[table , / , delete=b'']bytearray. translate[table , / , delete=b'']

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9006 method to create a translation table

Set the table argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 for translations that only delete characters

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
734

Changed in version 3. 6. delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. center[width[ , fillbyte]]bytearray. center[width[ , fillbyte]]

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust[width[ , fillbyte]]bytearray. ljust[width[ , fillbyte]]

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. lstrip[[chars]]bytearray. lstrip[[chars]]

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
735

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9013 for a method that will remove a single prefix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
736

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rjust[width[ , fillbyte]]bytearray. rjust[width[ , fillbyte]]

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit[sep=None , maxsplit=- 1]bytearray. rsplit[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7732 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 which is described in detail below

bytes. rstrip[[chars]]bytearray. rstrip[[chars]]

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
737

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9020 for a method that will remove a single suffix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
738

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. split[sep=None , maxsplit=- 1]bytearray. split[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given and non-negative, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7736 elements]. If maxsplit is not specified or is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9023 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9024]. The sep argument may consist of a multibyte sequence [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9025 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9026]. Splitting an empty sequence with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9027 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9028 depending on the type of object being split. Đối số sep có thể là bất kỳ đối tượng giống như byte .

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
739

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive ASCII whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII whitespace without a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
740

bytes. strip[[chars]]bytearray. strip[[chars]]

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
741

The binary sequence of byte values to remove may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. capitalize[]bytearray. capitalize[]

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. expandtabs[tabsize=8]bytearray. expandtabs[tabsize=8]

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending on the current column and the given tab size. Tab positions occur every tabsize bytes [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the sequence, the current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9032], one or more space characters are inserted in the result until the current column is equal to the next tab position. [The tab character itself is not copied. ] If the current byte is an ASCII newline [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9033] or carriage return [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9034], it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless of how the byte value is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
742

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. isalnum[]bytearray. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9037. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9038

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
743

bytes. isalpha[]bytearray. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9037

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
744

bytes. isascii[]bytearray. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit[]bytearray. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9038

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
745

bytes. islower[]bytearray. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
746

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050

bytes. isspace[]bytearray. isspace[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII whitespace characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053 [space, tab, newline, carriage return, vertical tab, form feed]

bytes. istitle[]bytearray. istitle[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is ASCII titlecase and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. See
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9056 for more details on the definition of “titlecase”

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
747

byte. isupper[]bytearray. isupper[]

Trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu có ít nhất một ký tự ASCII chữ hoa trong chuỗi và không có ký tự ASCII chữ thường, ngược lại là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
748

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050

bytes. lower[]bytearray. lower[]

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
749

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. splitlines[keepends=False]bytearray. splitlines[keepends=False]

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
770

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
771

bytes. swapcase[]bytearray. swapcase[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
772

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9066, it is always the case that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9067 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. title[]bytearray. title[]

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
773

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
774

A workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
775

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. upper[]bytearray. upper[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
776

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9050

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. zfill[width]bytearray. zfill[width]

Return a copy of the sequence left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9072 digits to make a sequence of length width. A leading sign prefix [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9073/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9074] is handled by inserting the padding after the sign character rather than before. For
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9076

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
777

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426-style Bytes Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors [such as failing to display tuples and dictionaries correctly]. If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] have one unique built-in operation. the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7782 operator [modulo]. This is also known as the bytes formatting or interpolation operator. Given
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 [where format is a bytes object],
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7782 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7785 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Otherwise, values must be a tuple with exactly the number of items specified by the format bytes object, or a single mapping object [for example, a dictionary]

Trình xác định chuyển đổi chứa hai hoặc nhiều ký tự và có các thành phần sau, phải xảy ra theo thứ tự này

  1. Ký tự

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7786, đánh dấu sự bắt đầu của trình xác định

  2. Khóa ánh xạ [tùy chọn], bao gồm một chuỗi ký tự trong ngoặc đơn [ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787]

  3. Cờ chuyển đổi [tùy chọn], ảnh hưởng đến kết quả của một số loại chuyển đổi

  4. Minimum field width [optional]. If specified as an

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788 [asterisk], the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier [optional]

  7. Conversion type

When the right argument is a dictionary [or other mapping type], then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
778

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Flag

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7793

The value conversion will use the “alternate form” [where defined below]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7776

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7776 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7797

[a space] A blank should be left before a positive number [or empty string] produced by a signed conversion

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

A sign character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778] will precede the conversion [overrides a “space” flag]

A length modifier [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8201,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203] may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204 is identical to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205

The conversion types are

Conversion

Meaning

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8211

Signed hexadecimal [lowercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Signed hexadecimal [uppercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [uppercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Floating point format. Sử dụng định dạng số mũ viết hoa nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Single byte [accepts integer or single byte objects]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
018

Bytes [any object that follows the buffer protocol or has

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
019].

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8222

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8222 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
018 and should only be used for Python2/3 code bases

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8224

Bytes [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
024]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8224 and should only be used for Python2/3 code bases

[7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786

No argument is converted, results in a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 character in the result

Notes

  1. The alternate form causes a leading octal specifier [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8228] to be inserted before the first digit

  2. The alternate form causes a leading

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 [depending on whether the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8211 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 format was used] to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8233, the output is truncated to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8233 characters

  6. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    037 is deprecated, but will not be removed during the 3. x series

  7. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    038 is deprecated, but will not be removed during the 3. x series

  8. See PEP 237

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

See also

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3. 5

Memory Views¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 objects allow Python code to access the internal data of an object that supports the buffer protocol without copying.

class memoryview[object]

Create a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424, an element is a single byte, but other types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
046 may have bigger elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
047 is equal to the length of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
048. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
049, the length is 1. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
050, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
051 attribute will give you the number of bytes in a single element

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
779

If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
053 is one of the native format specifiers from the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
820

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not allowed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
821

One-dimensional memoryviews of hashable [read-only] types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
055

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
822

Changed in version 3. 3. One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396

Changed in version 3. 5. memoryviews can now be indexed with tuple of integers.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8241 has several methods

__eq__[exporter]

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 syntax

For the subset of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 format strings currently supported by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
060,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
061 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
062 are equal if
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
063

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
823

If either format string is not supported by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 module, then the objects will always compare as unequal [even if the format strings and buffer contents are identical]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
824

Note that, as with floating point numbers,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
065 does not imply
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
066 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes[order='C']

Return the data in the buffer as a bytestring. This is equivalent to calling the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 constructor on the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
825

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
068 supports all format strings, including those that are not in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 module syntax

New in version 3. 8. order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

hex[[sep[ , bytes_per_sep]]]

Return a string object containing two hexadecimal digits for each byte in the buffer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
826

New in version 3. 5

Đã thay đổi trong phiên bản 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8259,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
071 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist[]

Return the data in the buffer as a list of elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
827

Changed in version 3. 3.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
060 now supports all single character native formats in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 module syntax as well as multi-dimensional representations.

toreadonly[]

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
828

New in version 3. 8

release[]

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when a view is held on them [for example, a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 would temporarily forbid resizing]; therefore, calling release[] is handy to remove these restrictions [and free any dangling resources] as soon as possible

After this method has been called, any further operation on the view raises a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 [except
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
076 itself which can be called multiple times]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
829

The context management protocol can be used for a similar effect, using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077 statement

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900

New in version 3. 2

cast[format[ , shape]]

Truyền dạng xem bộ nhớ sang định dạng hoặc hình dạng mới. shape defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
078, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 syntax. One of the formats must be a byte format [‘B’, ‘b’ or ‘c’]. The byte length of the result must be the same as the original length

Cast 1D/long to 1D/unsigned bytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901

Cast 1D/unsigned bytes to 1D/char

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

Cast 1D/bytes to 3D/ints to 1D/signed char

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

Cast 1D/unsigned long to 2D/unsigned long

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
904

New in version 3. 3

Changed in version 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905

New in version 3. 3

nbytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
080. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906

Multi-dimensional arrays

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907

New in version 3. 3

readonly

A bool indicating whether the memory is read only

format

A string containing the format [in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054 module style] for each element in the view. A memoryview can be created from exporters with arbitrary format strings, but some methods [e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
060] are restricted to native single element formats

Changed in version 3. 3. format

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
084 is now handled according to the struct module syntax. This means that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
085.

itemsize

The size in bytes of each element of the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents

shape

A tuple of integers the length of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
086 giving the shape of the memory as an N-dimensional array

Changed in version 3. 3. An empty tuple instead of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 when ndim = 0.

strides

A tuple of integers the length of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
086 giving the size in bytes to access each element for each dimension of the array

Changed in version 3. 3. An empty tuple instead of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only

c_contiguous

A bool indicating whether the memory is C- contiguous .

New in version 3. 3

f_contiguous

A bool indicating whether the memory is Fortran contiguous .

New in version 3. 3

contiguous

A bool indicating whether the memory is contiguous .

New in version 3. 3

Set Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470¶

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. [For other containers see the built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 classes, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
095 module. ]

Like other collections, sets support

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
096,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
097, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
098. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior

There are currently two built-in set types,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 type is mutable — the contents can be changed using methods like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
102 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301. Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 type is immutable and hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets [not frozensets] can be created by placing a comma-separated list of elements within braces, for example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
105, ngoài hàm tạo
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469

The constructors for both classes work the same

class set[[iterable]]class frozenset[[iterable]]

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable . To represent sets of sets, the inner sets must be

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 objects. If iterable is not specified, a new empty set is returned.

Sets can be created by several means

  • Use a comma-separated list of elements within braces.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    105

  • Use a set comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    109

  • Use the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    111,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    112

Instances of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 provide the following operations

len[s]

Return the number of elements in set s [cardinality of s]

x in s

Test x for membership in s

x not in s

Test x for non-membership in s

isdisjoint[other]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set

issubset[other]set 6 116

issuperset[other]set >= other

Test whether every element in other is in the set

set > other

Test whether the set is a proper superset of other, that is,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
117

union[*others]set . other . .

Return a new set with elements from the set and all others

intersection[*others]set & other & .

Return a new set with elements common to the set and all others

difference[*others]set - other - .

Return a new set with elements in the set that are not in the others

symmetric_difference[other]set ^ other

Return a new set with elements in either the set or other but not both

copy[]

Return a shallow copy of the set

Note, the non-operator versions of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
118,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
119,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
120,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
121,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
122, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
123 methods will accept any iterable as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone constructions like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
124 in favor of the more readable
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
125

Both

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 support set to set comparisons. Two sets are equal if and only if every element of each set is contained in the other [each is a subset of the other]. A set is less than another set if and only if the first set is a proper subset of the second set [is a subset, but is not equal]. A set is greater than another set if and only if the first set is a proper superset of the second set [is a superset, but is not equal]

Instances of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 are compared to instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 based on their members. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
130 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 and so does
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
132

So sánh tập hợp con và đẳng thức không tổng quát hóa thành hàm sắp xếp tổng. Ví dụ: hai tập hợp khác nhau bất kỳ không rỗng thì không bằng nhau và không phải là tập con của nhau, vì vậy tất cả các giá trị sau trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
134,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
135, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
136

Since sets only define partial ordering [subset relationships], the output of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
137 method is undefined for lists of sets

Set elements, like dictionary keys, must be hashable .

Binary operations that mix

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 instances with
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 return the type of the first operand. For example.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
140 returns an instance of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

The following table lists operations available for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 that do not apply to immutable instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

update[*others]set . = other . .

Update the set, adding elements from all others

intersection_update[*others]set &= other & .

Update the set, keeping only elements found in it and all others

difference_update[*others]set -= other . .

Update the set, removing elements found in others

symmetric_difference_update[other]set ^= other

Update the set, keeping only elements found in either set, but not in both

add[elem]

Add element elem to the set

remove[elem]

Remove element elem from the set. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 if elem is not contained in the set

discard[elem]

Remove element elem from the set if it is present

pop[]

Remove and return an arbitrary element from the set. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 if the set is empty

clear[]

Remove all elements from the set

Note, the non-operator versions of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
146,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
147,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
149 methods will accept any iterable as an argument

Note, the elem argument to the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
152 methods may be a set. To support searching for an equivalent frozenset, a temporary one is created from elem

Mapping Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468¶

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. [For other containers see the built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 classes, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
095 module. ]

A dictionary’s keys are almost arbitrary values. Values that are not hashable , that is, values containing lists, dictionaries or other mutable types [that are compared by value rather than by object identity] may not be used as keys. Values that compare equal [such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
159, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56] can be used interchangeably to index the same dictionary entry.

class dict[**kwargs]class dict[mapping , **kwargs]class dict[iterable , **kwargs]

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    161 pairs within braces.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    162 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    163

  • Use a dict comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    165

  • Use the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    166,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    167,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    168

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

To illustrate, the following examples all return a dictionary equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
169

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise, any valid keys can be used

These are the operations that dictionaries support [and therefore, custom mapping types should support too]

list[d]

Return a list of all the keys used in the dictionary d

len[d]

Return the number of items in the dictionary d

d[key]

Return the item of d with key key. Raises a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 if key is not in the map

If a subclass of dict defines a method

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
171 and key is not present, the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
172 operation calls that method with the key key as argument. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
172 operation then returns or raises whatever is returned or raised by the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
174 call. No other operations or methods invoke
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
171. Nếu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
171 không được xác định, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 được nâng lên.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
171 must be a method; it cannot be an instance variable

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
00

The example above shows part of the implementation of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
179. A different
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
180 method is used by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
181

d[key] = value

Set

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
172 to value

del d[key]

Remove

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
172 from d. Raises a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 if key is not in the map

key in d

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if d has a key key, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

key not in d

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
187

iter[d]

Trả lại một trình vòng lặp qua các khóa của từ điển. Đây là lối tắt cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
188

clear[]

Xóa tất cả các mục khỏi từ điển

copy[]

Trả lại một bản sao nông của từ điển

phương thức lớp từ khóa[có thể lặp lại[, value]]

Tạo một từ điển mới với các khóa từ iterable và các giá trị được đặt thành giá trị

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
189 là một phương thức lớp trả về một từ điển mới. giá trị mặc định là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. Tất cả các giá trị chỉ tham chiếu đến một thể hiện duy nhất, do đó, thông thường giá trị là một đối tượng có thể thay đổi chẳng hạn như một danh sách trống không có ý nghĩa gì. Để nhận các giá trị riêng biệt, hãy sử dụng hiểu chính tả thay thế.

lấy[khóa[ , default]]

Trả về giá trị cho khóa nếu khóa có trong từ điển, nếu không thì mặc định. Nếu giá trị mặc định không được cung cấp, nó sẽ mặc định là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, do đó phương pháp này không bao giờ tăng giá trị
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144

items[]

Trả về chế độ xem mới cho các mục của từ điển [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 cặp]. Xem tài liệu về đối tượng xem .

phím[]

Trả lại chế độ xem mới cho các khóa của từ điển. Xem tài liệu về đối tượng xem .

bật[phím[ , default]]

Nếu khóa nằm trong từ điển, hãy xóa nó và trả về giá trị của nó, nếu không thì trả về giá trị mặc định. Nếu giá trị mặc định không được cung cấp và khóa không có trong từ điển, thì một số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 sẽ xuất hiện

popitem[]

Xóa và trả về cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 từ từ điển. Các cặp được trả lại theo thứ tự LIFO

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
196 rất hữu ích để lặp lại triệt để một từ điển, như thường được sử dụng trong các thuật toán tập hợp. Nếu từ điển trống, gọi _____0196 sẽ tăng ____0144

Đã thay đổi trong phiên bản 3. 7. LIFO order is now guaranteed. Trong các phiên bản trước,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
196 sẽ trả về một cặp khóa/giá trị tùy ý.

đảo ngược[d]

Trả về một trình vòng lặp đảo ngược trên các khóa của từ điển. Đây là lối tắt cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200

New in version 3. 8

setdefault[key[ , default]]

Nếu khóa nằm trong từ điển, hãy trả về giá trị của nó. Nếu không, hãy chèn khóa có giá trị mặc định và trả về giá trị mặc định. mặc định mặc định là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

cập nhật[[khác]]

Cập nhật từ điển với các cặp khóa/giá trị từ khác, ghi đè lên các khóa hiện có. Trả lại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
146 chấp nhận một đối tượng từ điển khác hoặc một cặp khóa/giá trị có thể lặp lại [dưới dạng bộ dữ liệu hoặc các lần lặp khác có độ dài hai]. Nếu các đối số từ khóa được chỉ định, thì từ điển sẽ được cập nhật với các cặp khóa/giá trị đó.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
204

values[]

Trả về chế độ xem mới cho các giá trị của từ điển. Xem tài liệu về đối tượng xem .

So sánh bình đẳng giữa một chế độ xem

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
205 và chế độ xem khác sẽ luôn trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. Điều này cũng áp dụng khi so sánh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
205 với chính nó

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
01

d . khác

Tạo một từ điển mới với các khóa và giá trị được hợp nhất của d và khác, cả hai phải là từ điển. Các giá trị của other được ưu tiên khi d và các khóa chia sẻ khác

New in version 3. 9

d . = khác

Cập nhật từ điển d với các khóa và giá trị từ từ điển khác, có thể là ánh xạ hoặc iterable of key/value pairs. The values of other take priority when d and other share keys.

New in version 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 pairs [regardless of ordering]. Order comparisons [‘’] raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88.

Từ điển bảo toàn thứ tự chèn. Note that updating a key does not affect the order. Các phím được thêm sau khi xóa được chèn vào cuối

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
02

Đã thay đổi trong phiên bản 3. 7. Thứ tự từ điển được đảm bảo là thứ tự chèn. Hành vi này là một chi tiết triển khai của CPython từ 3. 6.

Từ điển và chế độ xem từ điển có thể đảo ngược

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
03

Đã thay đổi trong phiên bản 3. 8. Từ điển hiện có thể đảo ngược.

See also

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
210 có thể được sử dụng để tạo chế độ xem chỉ đọc của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468

Đối tượng xem từ điển¶

Các đối tượng được trả về bởi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
212,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
205 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
214 là các đối tượng xem. Chúng cung cấp chế độ xem động cho các mục nhập của từ điển, có nghĩa là khi từ điển thay đổi, chế độ xem sẽ phản ánh những thay đổi này

Chế độ xem từ điển có thể được lặp đi lặp lại để mang lại dữ liệu tương ứng và hỗ trợ kiểm tra tư cách thành viên

len[dictview]

Trả về số mục trong từ điển

lặp đi lặp lại [dictview]

Trả về một trình vòng lặp trên các khóa, giá trị hoặc mục [được biểu thị dưới dạng bộ dữ liệu của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193] trong từ điển

Các khóa và giá trị được lặp lại theo thứ tự chèn. Điều này cho phép tạo các cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
216 bằng cách sử dụng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
217.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
218. Một cách khác để tạo danh sách tương tự là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
219

Lặp lại các chế độ xem trong khi thêm hoặc xóa các mục nhập trong từ điển có thể làm tăng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
220 hoặc không thể lặp lại tất cả các mục nhập

Đã thay đổi trong phiên bản 3. 7. Thứ tự từ điển được đảm bảo là thứ tự chèn.

x in dictview

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if x is in the underlying dictionary’s keys, values or items [in the latter case, x should be a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 tuple]

đảo ngược [dictview]

Trả về một trình lặp đảo ngược trên các khóa, giá trị hoặc mục của từ điển. Chế độ xem sẽ được lặp lại theo thứ tự ngược lại của phần chèn

Đã thay đổi trong phiên bản 3. 8. Chế độ xem từ điển hiện có thể đảo ngược.

chế độ xem chính tả. lập bản đồ

Trả lại một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
210 bao bọc từ điển gốc mà chế độ xem đề cập đến

New in version 3. 10

Chế độ xem khóa giống như được đặt vì các mục nhập của chúng là duy nhất và có thể băm. Nếu tất cả các giá trị đều có thể băm, để các cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 là duy nhất và có thể băm, thì chế độ xem các mục cũng giống như được đặt. [Chế độ xem giá trị không được coi là giống như tập hợp vì các mục thường không phải là duy nhất. ] Đối với các khung nhìn dạng tập hợp, tất cả các thao tác được xác định cho lớp cơ sở trừu tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
225 đều khả dụng [ví dụ:
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
228]

Một ví dụ về việc sử dụng chế độ xem từ điển

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
04

Các loại trình quản lý ngữ cảnh¶

Câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077 của Python hỗ trợ khái niệm bối cảnh thời gian chạy được xác định bởi trình quản lý bối cảnh. Điều này được thực hiện bằng cách sử dụng một cặp phương thức cho phép các lớp do người dùng định nghĩa xác định bối cảnh thời gian chạy được nhập vào trước khi phần thân câu lệnh được thực thi và thoát khi câu lệnh kết thúc

trình quản lý ngữ cảnh. __enter__[]

Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
230 clause of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077 statements using this context manager

Ví dụ về trình quản lý bối cảnh tự trả về là một đối tượng tệp . Các đối tượng tệp tự trả về từ __enter__[] để cho phép sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
232 làm biểu thức ngữ cảnh trong câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077.

Một ví dụ về trình quản lý bối cảnh trả về một đối tượng liên quan là đối tượng được trả về bởi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
234. Những người quản lý này đặt ngữ cảnh thập phân đang hoạt động thành một bản sao của ngữ cảnh thập phân ban đầu rồi trả lại bản sao. Điều này cho phép thực hiện các thay đổi đối với ngữ cảnh thập phân hiện tại trong phần thân của câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077 mà không ảnh hưởng đến mã bên ngoài câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077

trình quản lý ngữ cảnh. __exit__[exc_type , exc_val, exc_tb]

Thoát khỏi bối cảnh thời gian chạy và trả về một cờ Boolean cho biết liệu có nên loại bỏ bất kỳ ngoại lệ nào xảy ra hay không. Nếu một ngoại lệ xảy ra trong khi thực thi phần thân của câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077, thì các đối số chứa loại ngoại lệ, giá trị và thông tin truy nguyên. Mặt khác, cả ba đối số đều là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Trả về một giá trị thực từ phương thức này sẽ khiến câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077 chặn ngoại lệ và tiếp tục thực thi với câu lệnh ngay sau câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077. Mặt khác, ngoại lệ tiếp tục lan truyền sau khi phương thức này thực hiện xong. Các ngoại lệ xảy ra trong quá trình thực thi phương thức này sẽ thay thế bất kỳ ngoại lệ nào xảy ra trong phần thân của câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
077

Ngoại lệ được truyền vào không bao giờ được gọi lại một cách rõ ràng - thay vào đó, phương thức này sẽ trả về một giá trị sai để cho biết rằng phương thức đã hoàn tất thành công và không muốn chặn ngoại lệ đã nêu. Điều này cho phép mã quản lý bối cảnh dễ dàng phát hiện xem phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
242 có thực sự bị lỗi hay không

Python định nghĩa một số trình quản lý ngữ cảnh để hỗ trợ đồng bộ hóa luồng dễ dàng, đóng nhanh tệp hoặc các đối tượng khác và thao tác đơn giản hơn đối với ngữ cảnh số học thập phân đang hoạt động. Các loại cụ thể không được xử lý đặc biệt ngoài việc thực hiện giao thức quản lý ngữ cảnh. Xem mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
243 để biết một số ví dụ

Python’s generator s and the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
244 decorator provide a convenient way to implement these protocols. Nếu một hàm tạo được trang trí bằng trình tạo trang trí
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
244, thì nó sẽ trả về trình quản lý ngữ cảnh thực hiện các phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
246 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
242 cần thiết, thay vì trình vòng lặp được tạo bởi hàm tạo không được trang trí.

Lưu ý rằng không có vị trí cụ thể nào cho bất kỳ phương thức nào trong số này trong cấu trúc kiểu cho các đối tượng Python trong API Python/C. Các loại tiện ích mở rộng muốn xác định các phương thức này phải cung cấp chúng như một phương thức truy cập Python bình thường. So với chi phí thiết lập bối cảnh thời gian chạy, chi phí hoạt động của một tra cứu từ điển một lớp là không đáng kể

Loại chú thích loại — Bí danh chung , Liên kết

Các loại tích hợp cốt lõi cho chú thích loạiBí danh chung and Union.

Loại bí danh chung¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 đối tượng thường được tạo bởi đăng ký một lớp. Chúng thường được sử dụng nhất với các lớp vùng chứa , chẳng hạn như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. Ví dụ:
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
251 là đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 được tạo bằng cách đăng ký lớp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 với đối số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901. Các đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 được thiết kế chủ yếu để sử dụng với chú thích loại .

Note

Nói chung, chỉ có thể đăng ký một lớp nếu lớp đó triển khai phương thức đặc biệt

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
256

Đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 hoạt động như một proxy cho loại chung , triển khai các loại chung được tham số hóa.

Đối với lớp vùng chứa, [các] đối số được cung cấp cho đăng ký của lớp có thể cho biết [các] loại phần tử . Ví dụ,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
258 có thể được sử dụng trong chú thích loại để biểu thị một
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 trong đó tất cả các phần tử thuộc loại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423.

Đối với một lớp định nghĩa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
256 nhưng không phải là một vùng chứa, [các] đối số được cung cấp cho đăng ký của lớp thường sẽ chỉ ra [các] kiểu trả về của một hoặc nhiều phương thức được xác định trên một đối tượng. Ví dụ:
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
262 có thể được sử dụng trên cả loại dữ liệu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 và loại dữ liệu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

  • Nếu

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    265, thì
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    982 sẽ là lại. Khớp đối tượng trong đó các giá trị trả về của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    267 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    268 đều thuộc loại
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422. Chúng ta có thể biểu diễn loại đối tượng này trong các chú thích kiểu với
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    248
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    271.

  • Nếu

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    272, [lưu ý
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8246 cho
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423], thì
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6331 cũng sẽ là một thể hiện của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    276, nhưng các giá trị trả về của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    277 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    278 đều sẽ thuộc loại
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423. Trong các chú thích loại, chúng tôi sẽ trình bày nhiều loại re. Khớp các đối tượng với
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    280.

Các đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 là các thể hiện của lớp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
282, cũng có thể được sử dụng để tạo trực tiếp các đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248

T[X, Y, . ]

Creates a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 representing a type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
285 parameterized by types X, Y, and more depending on the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
285 used. For example, a function expecting a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 containing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
05

Another example for mapping objects, using a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468, which is a generic type expecting two type parameters representing the key type and the value type. In this example, the function expects a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 with keys of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 and values of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
06

The builtin functions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
293 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
294 do not accept
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 types for their second argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
07

The Python runtime does not enforce type annotations . This extends to generic types and their type parameters. When creating a container object from a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
08

Furthermore, parameterized generics erase type parameters during object creation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
09

Calling

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 on a generic shows the parameterized type

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
10

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7768 method of generic containers will raise an exception to disallow mistakes like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
300

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
11

Tuy nhiên, các biểu thức như vậy hợp lệ khi sử dụng biến loại . Chỉ mục phải có nhiều phần tử bằng với số mục biến loại trong đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 của đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
302.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
12

Các lớp học chung tiêu chuẩn¶

Các lớp thư viện tiêu chuẩn sau đây hỗ trợ các generic được tham số hóa. danh sách này là không đầy đủ

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6394

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6393

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6470

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    308

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    309

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    181

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    311

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    179

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    313

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    314

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    315

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    316

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    317

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    318

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    319

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    320

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    321

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    322

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    323

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    324

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    325

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    225

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    327

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    328

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    329

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6396

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    332

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    333

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    334

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    335

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    336

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    337

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    338

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    339

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    340

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    341

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    342

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    343

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    344

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    345

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    346

  • lại. Họa tiết

  • lại. Cuộc thi đấu

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    347

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    348

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    349

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    210

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    351

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    352

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    353

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    354

Thuộc tính đặc biệt của đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248¶

Tất cả các generic được tham số hóa đều triển khai các thuộc tính chỉ đọc đặc biệt

genericalias. __origin__

Thuộc tính này trỏ đến lớp chung không tham số hóa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
13

tên chung. __args__

Thuộc tính này là một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 [có thể có độ dài 1] của các loại chung được truyền cho
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
256 ban đầu của lớp chung

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
14

tên chung. __tham số__

Thuộc tính này là một bộ được tính toán chậm [có thể trống] gồm các biến loại duy nhất được tìm thấy trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
302

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
15

Note

Một đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 với các tham số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
360 có thể không có
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
361 chính xác sau khi thay thế vì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
360 chủ yếu dành cho kiểm tra kiểu tĩnh

tên chung. __unpacked__

Một giá trị boolean đúng nếu bí danh đã được giải nén bằng cách sử dụng toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 [xem
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
364]

Mới trong phiên bản 3. 11

See also

PEP 484 - Type Hints

Giới thiệu khung của Python cho các chú thích loại

PEP 585 - Nhập gợi ý Generics trong bộ sưu tập tiêu chuẩn

Giới thiệu khả năng tham số hóa các lớp thư viện tiêu chuẩn, miễn là chúng triển khai phương thức lớp đặc biệt

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
256

Thuốc chung , thuốc chung do người dùng xác định
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
366

Tài liệu về cách triển khai các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi trình kiểm tra kiểu tĩnh

New in version 3. 9

Loại liên minh¶

Đối tượng hợp lưu giữ giá trị của phép toán

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
367 [theo bit hoặc] trên nhiều đối tượng loại . Các loại này chủ yếu dành cho chú thích loại . Biểu thức kiểu kết hợp cho phép cú pháp gợi ý kiểu sạch hơn so với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
368.

X . Y . .

Xác định một đối tượng kết hợp chứa các loại X, Y, v.v.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
369 có nghĩa là X hoặc Y. Nó tương đương với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
370. Ví dụ: hàm sau mong đợi một đối số kiểu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
16

union_object == other

Union objects can be tested for equality with other union objects. Thông tin chi tiết

  • Liên minh công đoàn bị san bằng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    17

  • Các loại dư thừa được loại bỏ

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    18

  • Khi so sánh các công đoàn, thứ tự bị bỏ qua

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    19

  • Nó tương thích với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    368

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    20

  • Các loại tùy chọn có thể được viết dưới dạng hợp nhất với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    21

isinstance[obj, union_object]issubclass[obj, union_object]

Các cuộc gọi đến

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
293 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
294 cũng được hỗ trợ với một đối tượng hợp nhất

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
22

Tuy nhiên, không thể sử dụng các đối tượng hợp có chứa các tổng quát được tham số hóa .

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
23

The user-exposed type for the union object can be accessed from

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
377 and used for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
293 checks. Một đối tượng không thể được khởi tạo từ loại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
24

Note

Phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
379 cho các đối tượng kiểu đã được thêm vào để hỗ trợ cú pháp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
369. Nếu một siêu dữ liệu triển khai
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
379, Liên minh có thể ghi đè lên nó

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
25

See also

PEP 604 – PEP đề xuất cú pháp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
369 và kiểu Union

New in version 3. 10

Các loại tích hợp khác¶

Trình thông dịch hỗ trợ một số loại đối tượng khác. Hầu hết trong số này chỉ hỗ trợ một hoặc hai thao tác

Mô-đun¶

Hoạt động đặc biệt duy nhất trên một mô-đun là truy cập thuộc tính.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
383, trong đó m là một mô-đun và tên truy cập vào tên được xác định trong bảng ký hiệu của m. Thuộc tính mô-đun có thể được gán cho. [Lưu ý rằng câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
384 nói đúng ra không phải là một thao tác trên đối tượng mô-đun;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
385 không yêu cầu đối tượng mô-đun có tên foo tồn tại, thay vào đó, nó yêu cầu định nghĩa [bên ngoài] cho mô-đun có tên foo ở đâu đó. ]

Một thuộc tính đặc biệt của mọi mô-đun là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
386. Đây là từ điển chứa bảng ký hiệu của module. Sửa đổi từ điển này sẽ thực sự thay đổi bảng ký hiệu của mô-đun, nhưng không thể gán trực tiếp cho thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
386 [bạn có thể viết
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
388, định nghĩa
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
389 là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55, nhưng bạn không thể viết
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
391]. Sửa đổi trực tiếp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
386 không được khuyến nghị

Các mô-đun được tích hợp trong trình thông dịch được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
393. Nếu được tải từ một tệp, chúng được viết là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
394

Lớp và thực thể lớp¶

Xem Đối tượng, giá trị và loạiĐịnh nghĩa lớp .

Chức năng¶

Các đối tượng hàm được tạo bởi các định nghĩa hàm. Thao tác duy nhất trên một đối tượng hàm là gọi nó.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
395

Thực sự có hai hương vị của các đối tượng chức năng. chức năng tích hợp và chức năng do người dùng xác định. Cả hai đều hỗ trợ cùng một thao tác [để gọi hàm], nhưng cách thực hiện khác nhau, do đó các loại đối tượng khác nhau

Xem Định nghĩa hàm để biết thêm thông tin.

Methods¶

Phương thức là các hàm được gọi bằng cách sử dụng ký hiệu thuộc tính. Có hai hương vị. các phương thức tích hợp sẵn [chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
396 trong danh sách] và các phương thức thể hiện của lớp. Các phương thức tích hợp được mô tả với các loại hỗ trợ chúng

Nếu bạn truy cập một phương thức [một hàm được xác định trong không gian tên lớp] thông qua một thể hiện, bạn sẽ nhận được một đối tượng đặc biệt. một đối tượng phương thức ràng buộc [còn gọi là phương thức thể hiện]. Khi được gọi, nó sẽ thêm đối số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
397 vào danh sách đối số. Các phương thức ràng buộc có hai thuộc tính chỉ đọc đặc biệt.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
398 là đối tượng mà phương thức hoạt động và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
399 là hàm thực thi phương thức. Gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
400 hoàn toàn tương đương với gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
401

Giống như các đối tượng hàm, các đối tượng phương thức ràng buộc hỗ trợ nhận các thuộc tính tùy ý. Tuy nhiên, vì các thuộc tính của phương thức thực sự được lưu trữ trên đối tượng chức năng bên dưới [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
402], nên việc đặt các thuộc tính của phương thức trên các phương thức bị ràng buộc là không được phép. Cố gắng đặt một thuộc tính trên một phương thức sẽ dẫn đến việc tăng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
403. Để đặt một thuộc tính phương thức, bạn cần đặt nó một cách rõ ràng trên đối tượng hàm bên dưới

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
26

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Đối tượng mã¶

Các đối tượng mã được triển khai sử dụng để biểu thị mã Python thực thi được "biên dịch giả" chẳng hạn như thân hàm. They differ from function objects because they don’t contain a reference to their global execution environment. Các đối tượng mã được trả về bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
404 tích hợp và có thể được trích xuất từ ​​các đối tượng hàm thông qua thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
405 của chúng. Xem thêm mô-đun
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
406

Việc truy cập vào

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
405 sẽ tạo ra một sự kiện kiểm tra
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
408 với các đối số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
409 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
410.

Một đối tượng mã có thể được thực thi hoặc đánh giá bằng cách chuyển đối tượng đó [thay vì chuỗi nguồn] tới các hàm dựng sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
411 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
412

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Nhập đối tượng¶

Loại đối tượng đại diện cho các loại đối tượng khác nhau. Loại đối tượng được truy cập bằng chức năng tích hợp sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
413. Không có thao tác đặc biệt nào trên các loại. Mô-đun tiêu chuẩn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
414 xác định tên cho tất cả các loại tích hợp tiêu chuẩn

Các loại được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
415

Đối tượng Null¶

Đối tượng này được trả về bởi các hàm không trả về giá trị một cách rõ ràng. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng null, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 [tên dựng sẵn].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
417 tạo ra cùng một singleton

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Đối tượng Dấu chấm lửng¶

This object is commonly used by slicing [see Slicings ]. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng dấu chấm lửng, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
419 [tên dựng sẵn].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
420 tạo ra đĩa đơn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
419.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
419 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423

Đối tượng không được triển khai¶

Đối tượng này được trả về từ phép so sánh và phép toán nhị phân khi chúng được yêu cầu thao tác trên các loại mà chúng không hỗ trợ. Xem So sánh để biết thêm thông tin. Có chính xác một đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
424.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
425 tạo ra cá thể đơn lẻ.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
424

Giá trị Boolean¶

Giá trị Boolean là hai đối tượng hằng số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56. Chúng được sử dụng để biểu thị giá trị thật [mặc dù các giá trị khác cũng có thể được coi là sai hoặc đúng]. Trong ngữ cảnh số [ví dụ: khi được sử dụng làm đối số cho toán tử số học], chúng hoạt động giống như các số nguyên 0 và 1 tương ứng. Có thể sử dụng hàm tích hợp sẵn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
429 để chuyển đổi bất kỳ giá trị nào thành Boolean, nếu giá trị đó có thể được hiểu là giá trị thực [xem phần Kiểm tra giá trị thực above].

Chúng được viết lần lượt là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

Internal Objects¶

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thông tin này. Nó mô tả các đối tượng khung ngăn xếp, đối tượng truy nguyên và đối tượng lát.

Thuộc tính đặc biệt¶

Việc triển khai thêm một vài thuộc tính chỉ đọc đặc biệt cho một số loại đối tượng, nơi chúng có liên quan. Một số trong số này không được báo cáo bởi hàm tích hợp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
432

đối tượng. __dict__

Từ điển hoặc đối tượng ánh xạ khác được sử dụng để lưu trữ các thuộc tính [có thể ghi] của đối tượng

ví dụ. __class__

Lớp mà một thể hiện của lớp thuộc về

lớp. __base__

Bộ các lớp cơ sở của một đối tượng lớp

định nghĩa. __name__

Tên của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện của trình tạo

định nghĩa. __qualname__

The tên đủ điều kiện của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện trình tạo.

New in version 3. 3

lớp. __mro__

Thuộc tính này là một bộ các lớp được xem xét khi tìm kiếm các lớp cơ sở trong quá trình phân giải phương thức

lớp. mro[]

Phương thức này có thể được ghi đè bởi một siêu dữ liệu để tùy chỉnh thứ tự phân giải phương thức cho các phiên bản của nó. Nó được gọi khi khởi tạo lớp và kết quả của nó được lưu trữ trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
433

lớp. __phân lớp__[]

Mỗi lớp giữ một danh sách các tham chiếu yếu đến các lớp con trực tiếp của nó. Phương thức này trả về một danh sách tất cả các tham chiếu vẫn còn tồn tại. Danh sách theo thứ tự định nghĩa. Thí dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
27

Giới hạn độ dài chuyển đổi chuỗi số nguyên¶

CPython có giới hạn toàn cầu cho việc chuyển đổi giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 để giảm thiểu các cuộc tấn công từ chối dịch vụ. Giới hạn này chỉ áp dụng cho cơ số thập phân hoặc cơ số không phải lũy thừa hai. Chuyển đổi thập lục phân, bát phân và nhị phân là không giới hạn. The limit can be configured

Loại ________ 6901 trong Python là một số có độ dài tùy ý được lưu trữ ở dạng nhị phân [thường được gọi là “bignum”]. Không tồn tại thuật toán nào có thể chuyển đổi một chuỗi thành một số nguyên nhị phân hoặc một số nguyên nhị phân thành một chuỗi trong thời gian tuyến tính, trừ khi cơ số là lũy thừa của 2. Ngay cả các thuật toán được biết đến nhiều nhất cho cơ số 10 cũng có độ phức tạp bậc hai. Chuyển đổi một giá trị lớn chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
437 có thể mất hơn một giây trên CPU nhanh

Giới hạn kích thước chuyển đổi cung cấp một cách thiết thực để tránh CVE-2020-10735

Giới hạn được áp dụng cho số ký tự chữ số trong chuỗi đầu vào hoặc đầu ra khi sử dụng thuật toán chuyển đổi phi tuyến tính. Dấu gạch dưới và dấu không được tính vào giới hạn

Khi một hoạt động sẽ vượt quá giới hạn, một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 được nâng lên

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
28

Giới hạn mặc định là 4300 chữ số như được cung cấp trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
439. Giới hạn thấp nhất có thể được định cấu hình là 640 chữ số như được cung cấp trong
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
440

xác minh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
29

Mới trong phiên bản 3. 11

API bị ảnh hưởng¶

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    444 với cơ sở mặc định 10

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    445 cho tất cả các cơ số không phải là lũy thừa của 2

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    446

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    447

  • bất kỳ chuyển đổi chuỗi nào khác sang cơ số 10, ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    448,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    449 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    450

Các giới hạn không áp dụng cho các hàm có thuật toán tuyến tính

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    445 với cơ số 2, 4, 8, 16 hoặc 32

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    452 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    453

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    454,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    455,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    456

  • Ngôn ngữ nhỏ đặc tả định dạng cho các số hex, bát phân và nhị phân.

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    902

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    908

Định cấu hình giới hạn¶

Trước khi Python khởi động, bạn có thể sử dụng biến môi trường hoặc cờ dòng lệnh của trình thông dịch để định cấu hình giới hạn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    461, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    462 để đặt giới hạn thành 640 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    463 để tắt giới hạn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    464, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    465

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    466 chứa giá trị của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    461 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    464. Nếu cả tùy chọn env var và tùy chọn
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    469 được đặt, tùy chọn
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    469 sẽ được ưu tiên. Giá trị -1 cho biết rằng cả hai đều không được đặt, giá trị này là ________ 0439 đã được sử dụng trong quá trình khởi tạo

Từ mã, bạn có thể kiểm tra giới hạn hiện tại và đặt giới hạn mới bằng cách sử dụng các API

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
472 này

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    473 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    474 là một getter và setter cho giới hạn toàn phiên dịch. Phiên dịch viên phụ có giới hạn riêng của họ

Thông tin về mặc định và tối thiểu có thể được tìm thấy trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
475

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    439 là giới hạn mặc định được biên dịch sẵn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    440 là giá trị thấp nhất được chấp nhận cho giới hạn [khác 0 sẽ vô hiệu hóa nó]

Mới trong phiên bản 3. 11

thận trọng

Đặt giới hạn thấp có thể dẫn đến sự cố. Mặc dù hiếm gặp, mã tồn tại chứa các hằng số nguyên ở dạng thập phân trong nguồn của chúng vượt quá ngưỡng tối thiểu. Hậu quả của việc đặt giới hạn là mã nguồn Python chứa các số nguyên thập phân dài hơn giới hạn sẽ gặp lỗi trong quá trình phân tích cú pháp, thường là tại thời điểm khởi động hoặc thời điểm nhập hoặc thậm chí tại thời điểm cài đặt - bất kỳ lúc nào bản cập nhật

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
478 chưa tồn tại cho . Một giải pháp thay thế cho nguồn chứa các hằng số lớn như vậy là chuyển đổi chúng sang dạng thập lục phân
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 vì nó không có giới hạn

Kiểm tra ứng dụng của bạn kỹ lưỡng nếu bạn sử dụng giới hạn thấp. Đảm bảo các thử nghiệm của bạn chạy với giới hạn được đặt sớm thông qua môi trường hoặc cờ để nó áp dụng trong quá trình khởi động và thậm chí trong bất kỳ bước cài đặt nào có thể gọi Python để biên dịch trước nguồn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
480 thành tệp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
478

Cấu hình đề xuất¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
439 mặc định dự kiến ​​sẽ hợp lý cho hầu hết các ứng dụng. Nếu ứng dụng của bạn yêu cầu một giới hạn khác, hãy đặt giới hạn đó từ điểm vào chính của bạn bằng cách sử dụng mã bất khả tri của phiên bản Python vì các API này đã được thêm vào trong các bản phát hành bản vá bảo mật trong các phiên bản trước 3. 11

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
30

Nếu bạn cần tắt hoàn toàn, hãy đặt thành

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

chú thích

1

Thông tin bổ sung về các phương pháp đặc biệt này có thể được tìm thấy trong Hướng dẫn tham khảo Python [ Tùy chỉnh cơ bản ].

2

Kết quả là, danh sách

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
484 được coi là bằng với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
485 và tương tự đối với các bộ dữ liệu

3

Chúng phải có vì trình phân tích cú pháp không thể cho biết loại toán hạng

4[1,2,3,4]

Các ký tự viết hoa là những ký tự có thuộc tính danh mục chung là một trong số “Lu” [Chữ cái, chữ hoa], “Ll” [Chữ cái, chữ thường] hoặc “Lt” [Chữ cái, chữ hoa tiêu đề]

5[1,2]

Do đó, để chỉ định dạng một bộ dữ liệu, bạn nên cung cấp một bộ dữ liệu đơn có phần tử duy nhất là bộ dữ liệu được định dạng

Bạn có thể chuyển đổi một byte thành một int không?

Phương thức intValue[] của lớp Byte là một phương thức tích hợp sẵn trong Java được sử dụng để trả về giá trị của đối tượng Byte này dưới dạng int .

Mảng byte có bất biến trong Python không?

hàm bytearray[]. Loại bytearray là một chuỗi số nguyên có thể thay đổi trong phạm vi 0

Chủ Đề