Bản đồ python (tròn)

Bản đồ, Bộ lọc và Giảm là những ví dụ điển hình về lập trình chức năng. Chúng cho phép chúng ta viết mã đơn giản hơn, ngắn hơn mà không cần bận tâm đến các vòng lặp và phân nhánh

Trong hướng dẫn này, chúng ta sẽ xem cách sử dụng các hàm lọc và bản đồ tích hợp trong python

Bản đồ được tích hợp sẵn với Python [trong mô-đun __builtins__] và không cần nhập. Bây giờ chúng ta hãy hiểu rõ hơn về cách thức hoạt động của bản đồ

Chức năng bản đồ

Hàm map[] có cú pháp như sau

0.33
6

Trong đó chức năng là chức năng mà mỗi phần tử trong iterables [bao nhiêu tùy ý] sẽ được áp dụng trên. Dấu hoa thị [*] có nghĩa là có thể có nhiều lần lặp nhất có thể, hàm có số chính xác như các đối số đầu vào được yêu cầu. Ngoài ra, số lượng đối số để hoạt động phải là số lần lặp được liệt kê

Hãy cùng xem một vài ví dụ để hiểu rõ hơn

Nếu tôi có một danh sách tên [có thể lặp lại ở đây] và tất cả đều ở dạng chữ hoa và tôi cần chuyển đổi chúng thành chữ thường. Trong lập trình python bình thường, nó sẽ giống như thế này

Bây giờ hãy xem cách chúng ta có thể làm điều tương tự bằng cách sử dụng chức năng bản đồ

Sử dụng cú pháp map[] ở trên, trong đó hàm là str. thấp hơn và iterables là danh sách all_names — chỉ một lần lặp. Cũng lưu ý rằng chúng tôi đã không gọi str. chức năng thấp hơn [như. str. phía trên], vì chức năng bản đồ thực hiện điều đó cho chúng tôi trên từng phần tử trong danh sách của chúng tôi

Xin lưu ý rằng trong ví dụ này. , str. chức năng thấp hơn chỉ yêu cầu một đối số theo định nghĩa và vì vậy chúng tôi chỉ chuyển một lần lặp cho nó. Vì vậy, nếu hàm bạn đang chuyển yêu cầu hai hoặc ba hoặc n đối số, thì bạn cần chuyển hai, ba hoặc n lần lặp cho nó. Hãy xem một ví dụ khác để hiểu điều này

Nếu tôi có một danh sách các số có bốn chữ số thập phân. Và tôi cần làm tròn từng phần tử trong danh sách đến vị trí thập phân của nó, tôi. e Tôi muốn làm tròn phần tử đầu tiên trong danh sách đến một chữ số thập phân, phần tử thứ hai đến hai chữ số thập phân, phần thứ ba đến ba chữ số thập phân, v.v. Với map[] điều này rất dễ dàng. Hãy xem làm thế nào

Ở đây, hàm round[] nhận hai đối số -- số để làm tròn lên và số vị trí thập phân để làm tròn số lên tới. Vì vậy, vì hàm yêu cầu hai đối số, nên chúng ta cần chuyển vào hai lần lặp

Hàm range[1,7] đóng vai trò là đối số thứ hai của hàm round[]. Vì vậy, khi bản đồ lặp qua danh sách deci_numbers, trong lần lặp đầu tiên, phần tử đầu tiên của danh sách, 7. 156783 được chuyển cùng với phần tử đầu tiên của phạm vi [1,7], 1 để làm tròn, làm cho nó trở thành round[7] một cách hiệu quả. 156783,1]. Trong lần lặp thứ hai, phần tử thứ hai của danh sách là 4. 546689 cùng với phần tử thứ hai của phạm vi [1,7], 2 được chuyển sang vòng làm cho nó chuyển thành vòng [4. 546689,2]. Điều này sẽ tiếp tục cho đến khi kết thúc danh sách

Bây giờ trong trường hợp bạn thay đổi phạm vi thành [1,4], result = list[map[round,deci_numbers, range[1,4]]], bạn sẽ không gặp bất kỳ lỗi nào ngay cả khi độ dài của deci_numbers và độ dài của . Thay vào đó, đây là những gì xảy ra. Nó lấy phần tử đầu tiên của deci_numbers và phần tử đầu tiên của phạm vi [1,4] và chuyển nó vào vòng. vòng đánh giá nó sau đó lưu kết quả. Sau đó, nó tiếp tục lặp lại lần thứ hai, lấy phần tử thứ hai trong danh sách và phần tử thứ hai của phạm vi [1,4], vòng lưu lại lần nữa. Điều này tiếp tục cho đến lần lặp thứ tư. Trong lần lặp thứ tư, nó cố lấy phần tử thứ tư của phạm vi[1,4] nhưng vì phạm vi[1,4] không có phần tử thứ tư, nên Python chỉ cần dừng và trả về kết quả, trong trường hợp này đơn giản là [ . 2,4. 55,15. 009]

Sử dụng lambda với chức năng bản đồ

Lưu ý ở đây rằng sử dụng và ánh xạ, tôi thậm chí không cần tạo một hàm bằng cách sử dụng hàm def my_function[]. Đó là cách map[] linh hoạt

Phần kết luận

Trong hướng dẫn này, với sự trợ giúp của một số ví dụ, chúng ta đã học cách sử dụng các hàm bản đồ tích hợp trong python

Các số dấu phẩy động được biểu diễn trong phần cứng máy tính dưới dạng phân số cơ số 2 [nhị phân]. Ví dụ: phân số thập phân

0.333
6 có giá trị 1/10 + 2/100 + 5/1000 và theo cách tương tự, phân số nhị phân
0.333
7 có giá trị 0/2 + 0/4 + 1/8. Hai phân số này có các giá trị giống hệt nhau, sự khác biệt thực sự duy nhất là phân số đầu tiên được viết theo ký hiệu phân số cơ số 10 và phân số thứ hai trong cơ số 2

Thật không may, hầu hết các phân số thập phân không thể được biểu diễn chính xác dưới dạng phân số nhị phân. Hệ quả là, nói chung, các số dấu phẩy động thập phân bạn nhập chỉ gần đúng với các số dấu phẩy động nhị phân thực sự được lưu trữ trong máy

Vấn đề dễ hiểu hơn lúc đầu ở cơ sở 10. Xét phân số 1/3. Bạn có thể tính gần đúng dưới dạng phân số cơ số 10

0.3

hoặc tốt hơn,

0.33

hoặc tốt hơn,

0.333

và như thế. Cho dù bạn sẵn sàng viết ra bao nhiêu chữ số, kết quả sẽ không bao giờ chính xác là 1/3, mà sẽ là một xấp xỉ ngày càng tốt hơn của 1/3

Theo cách tương tự, cho dù bạn sẵn sàng sử dụng bao nhiêu chữ số cơ số 2, thì giá trị thập phân 0. 1 không thể biểu diễn chính xác dưới dạng phân số cơ số 2. Trong cơ số 2, 1/10 là phân số lặp lại vô hạn

0.0001100110011001100110011001100110011001100110011...

Dừng lại ở bất kỳ số bit hữu hạn nào và bạn nhận được xấp xỉ. Trên hầu hết các máy hiện nay, số float được xấp xỉ bằng cách sử dụng phân số nhị phân với tử số sử dụng 53 bit đầu tiên bắt đầu bằng bit quan trọng nhất và với mẫu số là lũy thừa của hai. Trong trường hợp 1/10, phân số nhị phân là

0.333
8 gần bằng nhưng không chính xác bằng giá trị thực của 1/10

Nhiều người dùng không biết về giá trị gần đúng do cách hiển thị các giá trị. Python chỉ in một giá trị thập phân gần đúng với giá trị thập phân thực của xấp xỉ nhị phân được máy lưu trữ. Trên hầu hết các máy, nếu Python in giá trị thập phân thực của xấp xỉ nhị phân được lưu trữ cho 0. 1, nó sẽ phải hiển thị

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

Đó là nhiều chữ số hơn hầu hết mọi người thấy hữu ích, vì vậy Python giữ cho số lượng chữ số có thể quản lý được bằng cách hiển thị một giá trị được làm tròn thay thế

________số 8

Chỉ cần nhớ, mặc dù kết quả được in trông giống như giá trị chính xác là 1/10, nhưng giá trị được lưu trữ thực tế là phân số nhị phân có thể biểu thị gần nhất

Điều thú vị là có nhiều số thập phân khác nhau có cùng phân số nhị phân gần đúng nhất. Ví dụ: các số

0.333
9 và
0.0001100110011001100110011001100110011001100110011...
0 và
0.0001100110011001100110011001100110011001100110011...
1 đều xấp xỉ bằng
0.333
8. Vì tất cả các giá trị thập phân này có cùng giá trị gần đúng, nên bất kỳ giá trị nào trong số chúng đều có thể được hiển thị trong khi vẫn bảo toàn giá trị bất biến
0.0001100110011001100110011001100110011001100110011...
3

Trong lịch sử, dấu nhắc Python và hàm tích hợp sẽ chọn một chữ số có 17 chữ số có nghĩa,

0.0001100110011001100110011001100110011001100110011...
0. Bắt đầu với Python 3. 1, Python [trên hầu hết các hệ thống] hiện có thể chọn cái ngắn nhất trong số này và chỉ cần hiển thị
0.333
9

Lưu ý rằng đây là bản chất của dấu phẩy động nhị phân. đây không phải là lỗi trong Python và nó cũng không phải là lỗi trong mã của bạn. Bạn sẽ thấy cùng một thứ trong tất cả các ngôn ngữ hỗ trợ số học dấu phẩy động của phần cứng của bạn [mặc dù một số ngôn ngữ có thể không hiển thị sự khác biệt theo mặc định hoặc trong tất cả các chế độ đầu ra]

Để có kết quả dễ chịu hơn, bạn có thể muốn sử dụng định dạng chuỗi để tạo ra một số lượng hạn chế các chữ số có nghĩa

0.333
6

Điều quan trọng là phải nhận ra rằng đây thực sự là một ảo ảnh. bạn chỉ đơn giản là làm tròn hiển thị giá trị thực của máy

Một ảo ảnh có thể sinh ra một ảo ảnh khác. Ví dụ, kể từ 0. 1 không chính xác là 1/10, tổng ba giá trị của 0. 1 có thể không mang lại chính xác 0. 3, một trong hai

0.333
7

Ngoài ra, kể từ 0. 1 không thể tiến gần hơn đến giá trị chính xác của 1/10 và 0. 3 không thể tiến gần hơn đến giá trị chính xác của 3/10, thì việc làm tròn trước bằng hàm không thể giúp được

0.333
8

Mặc dù các số không thể được thực hiện gần hơn với các giá trị chính xác dự định của chúng, nhưng hàm này có thể hữu ích cho việc làm tròn sau để các kết quả có giá trị không chính xác có thể so sánh được với nhau

0.333
9

Số học dấu phẩy động nhị phân có nhiều bất ngờ như thế này. Vấn đề với “0. 1” được giải thích chi tiết chính xác bên dưới, trong phần “Lỗi trình bày”. Xem The Perils of Floating Point để có tài khoản đầy đủ hơn về những bất ngờ phổ biến khác

Như đã nói ở gần cuối, “không có câu trả lời dễ dàng. ” Tuy nhiên, đừng quá cảnh giác với dấu phẩy động. Các lỗi trong thao tác dấu phẩy động của Python được kế thừa từ phần cứng dấu phẩy động và trên hầu hết các máy theo thứ tự không quá 1 phần trong 2**53 cho mỗi thao tác. Điều đó là quá đủ cho hầu hết các nhiệm vụ, nhưng bạn cần lưu ý rằng đó không phải là số học thập phân và mọi thao tác float có thể gặp lỗi làm tròn mới

Mặc dù vẫn tồn tại các trường hợp bệnh lý, nhưng đối với hầu hết việc sử dụng thông thường số học dấu phẩy động, bạn sẽ thấy kết quả mà bạn mong đợi cuối cùng nếu bạn chỉ làm tròn phần hiển thị kết quả cuối cùng của mình thành số chữ số thập phân mà bạn mong đợi. thường là đủ và để kiểm soát tốt hơn, hãy xem các chỉ định định dạng của phương thức trong

Đối với các trường hợp sử dụng yêu cầu biểu diễn số thập phân chính xác, hãy thử sử dụng mô-đun thực hiện phép tính số thập phân phù hợp cho ứng dụng kế toán và ứng dụng có độ chính xác cao

Một dạng số học chính xác khác được hỗ trợ bởi mô-đun thực hiện phép tính số học dựa trên các số hữu tỷ [vì vậy các số như 1/3 có thể được biểu diễn chính xác]

If you are a heavy user of floating point operations you should take a look at the NumPy package and many other packages for mathematical and statistical operations supplied by the SciPy project. See .

Python cung cấp các công cụ có thể hữu ích trong những trường hợp hiếm hoi khi bạn thực sự muốn biết giá trị chính xác của số float. Phương thức biểu thị giá trị của số float dưới dạng phân số

0.33
0

Vì tỷ lệ này là chính xác nên nó có thể được sử dụng để tạo lại giá trị ban đầu một cách dễ dàng

0.33
1

Phương thức này biểu thị một số float ở dạng thập lục phân [cơ số 16], một lần nữa đưa ra giá trị chính xác được máy tính của bạn lưu trữ

0.33
2

Biểu diễn thập lục phân chính xác này có thể được sử dụng để tái tạo lại chính xác giá trị float

0.33
3

Vì biểu diễn chính xác nên rất hữu ích để chuyển các giá trị một cách đáng tin cậy qua các phiên bản khác nhau của Python [độc lập với nền tảng] và trao đổi dữ liệu với các ngôn ngữ khác hỗ trợ cùng định dạng [chẳng hạn như Java và C99]

Một công cụ hữu ích khác là chức năng giúp giảm thiểu tình trạng mất độ chính xác trong quá trình tính tổng. Nó theo dõi "các chữ số bị mất" khi các giá trị được thêm vào tổng số đang chạy. Điều đó có thể tạo ra sự khác biệt về độ chính xác tổng thể để các lỗi không tích lũy đến mức chúng ảnh hưởng đến tổng số cuối cùng

0.33
4

15. 1. Lỗi trình bày

Phần này giải thích “0. 1” một cách chi tiết và cho biết cách bạn có thể tự mình thực hiện phân tích chính xác các trường hợp như thế này. Sự quen thuộc cơ bản với biểu diễn dấu phẩy động nhị phân được giả định

Lỗi biểu diễn đề cập đến thực tế là một số phân số thập phân [hầu hết, trên thực tế] không thể được biểu diễn chính xác dưới dạng phân số nhị phân [cơ số 2]. Đây là lý do chính tại sao Python [hoặc Perl, C, C++, Java, Fortran, và nhiều thứ khác] thường không hiển thị số thập phân chính xác mà bạn mong đợi

Tại sao vậy? . Hầu như tất cả các máy hiện nay [tháng 11 năm 2000] đều sử dụng số học dấu phẩy động IEEE-754 và hầu hết tất cả các nền tảng ánh xạ Python đều có độ chính xác kép IEEE-754. 754 nhân đôi chứa 53 bit chính xác, do đó, trên đầu vào, máy tính sẽ cố gắng chuyển đổi 0. 1 thành phân số gần nhất mà nó có thể có dạng J/2**N trong đó J là một số nguyên chứa chính xác 53 bit. viết lại

0.33
5

như

0.33
6

và nhớ lại rằng J có chính xác 53 bit [là

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
6 nhưng là
>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
7], giá trị tốt nhất cho N là 56

0.33
7

Tức là, 56 là giá trị duy nhất của N để lại cho J đúng 53 bit. Giá trị tốt nhất có thể của J khi đó thương số đó được làm tròn

0.33
8

Vì số dư lớn hơn một nửa của 10, nên giá trị gần đúng nhất có được bằng cách làm tròn lên

0.33
9

Do đó, xấp xỉ tốt nhất có thể đến 1/10 trong độ chính xác kép 754 là

0.333
0

Chia cả tử và mẫu cho 2 sẽ được phân số

0.333
1

Lưu ý rằng vì chúng ta đã làm tròn số nên con số này thực sự lớn hơn 1/10 một chút; . Nhưng không có trường hợp nào có thể chính xác 1/10

Vì vậy, máy tính không bao giờ “thấy” 1/10. những gì nó nhìn thấy là phân số chính xác được đưa ra ở trên, xấp xỉ kép 754 tốt nhất mà nó có thể nhận được

0.333
2

Nếu chúng ta nhân phân số đó với 10**55, chúng ta có thể thấy giá trị đến 55 chữ số thập phân

0.333
3

nghĩa là số chính xác được lưu trong máy tính bằng giá trị thập phân 0. 1000000000000000055511151231257827021181583404541015625. Thay vì hiển thị giá trị thập phân đầy đủ, nhiều ngôn ngữ [bao gồm cả các phiên bản Python cũ hơn], làm tròn kết quả thành 17 chữ số có nghĩa

Chủ Đề