bottom-up and top-down attention: different processes and overlapping neural systems

  1. Deuschl G [2006] A randomized trial of deep-brain stimulation for Parkinson. N Engl J Med 355:896–908

    CAS  Article  Google Scholar 

  2. Lulic D, Ahmadian A, Baaj AA, Benbadis SR, Vale FL [2009] Vagus nerve stimulation. Neurosurg Focus 27:E5

    Article  Google Scholar 

  3. Loeser JD, Black RG, Christman A [1975] Relief of pain by transcutaneous stimulation. J Neurosurg 42:308–314

    CAS  Article  Google Scholar 

  4. Antal A, Paulus W [2013] Transcranial alternating current stimulation [tACS]. Front Hum Neurosci 7:1–4

    Article  Google Scholar 

  5. Stagg CJ et al [2011] Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49:800–804

    CAS  Article  Google Scholar 

  6. Heinen K et al [2016] Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia 87:35–42

    Article  Google Scholar 

  7. Helfrich RF et al [2015] Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12:1–15

    Google Scholar 

  8. Vossen A, Gross J, Thut G [2015] Alpha power increase after transcranial alternating current stimulation at alpha frequency [α-tACS] reflects plastic changes rather than entrainment. Brain Stimul 8:499–508

    Article  Google Scholar 

  9. Sparing R, Mottaghy FM [2008] Noninvasive brain stimulation with transcranial magnetic or direct current stimulation [TMS/tDCS]—from insights into human memory to therapy of its dysfunction. Methods 44:329–337

    CAS  Article  Google Scholar 

  10. Barker AT, Jalinous R, Freeston IL [1985] Non-invasive magnetic stimulation of human motor cortex. Lancet 325[8437]:1106–1107

    Article  Google Scholar 

  11. Rossini PM, Rossi S [2007] Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488

    Article  Google Scholar 

  12. Chambers CD, Heinen K [2010] TMS and the functional neuroanatomy of attention. Cortex 46:114–117

    Article  Google Scholar 

  13. Deng ZD, Lisanby SH, Peterchev AV [2013] Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6[1]:1–13

    Article  Google Scholar 

  14. Amassian VE et al [1989] Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol Potent Sect 74:458–462

    CAS  Article  Google Scholar 

  15. Amassian VE, Cracco RQ, Maccabee PJ [1989] Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol Potent Sect 74:401–416

    CAS  Article  Google Scholar 

  16. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD [1989] Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412[1]:449–473

    CAS  Article  Google Scholar 

  17. Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M [1994] Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol Potent Sect 93:42–48

    CAS  Article  Google Scholar 

  18. Wassermann EM et al [1996] Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol Mot Control 101:412–417

    CAS  Article  Google Scholar 

  19. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A [2000] Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430

    CAS  Article  Google Scholar 

  20. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD [1998] Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophys 15[4]:333–343

    CAS  Article  Google Scholar 

  21. Cole JC, Green Bernacki C, Helmer A, Pinninti N, O’reardon JP [2015] Efficacy of Transcranial magnetic stimulation [TMS] in the treatment of schizophrenia: a review of the literature to date. Innov Clin Neurosci 12:12–19

    Google Scholar 

  22. Pascual-Leone A, Walsh V, Rothwell J [2000] Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    CAS  Article  Google Scholar 

  23. Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M [1994] Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5[9]:1157–1160

  24. Chambers CD, Mattingley JB [2005] Neurodisruption of selective attention: insights and implications. Trends Cogn Sci 9:542–550

    Article  Google Scholar 

  25. Rushworth MFS et al [2002] Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87:2577–2592

    CAS  Article  Google Scholar 

  26. Ogiue-Ikeda M, Kawato S, Ueno S [2003] The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res 993:222–226

    CAS  Article  Google Scholar 

  27. Thielscher A, Opitz A, Windhoff M [2011] Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54[1]: 234–243

  28. Windhoff M, Opitz A, Thielscher A [2013] Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp 34:923–935

    Article  Google Scholar 

  29. Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A [2011] How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58:849–859

    Article  Google Scholar 

  30. Ziemann U et al [1998] Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 511:181–190

    CAS  Article  Google Scholar 

  31. Wagner T, Rushmore J, Eden U, Valero-Cabre A [2009] Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45[9]:1025–1034

    Article  Google Scholar 

  32. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y [2007] The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032

    CAS  Article  Google Scholar 

  33. Muller PA et al [2014] Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS One 9:1–8

    Google Scholar 

  34. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC [2005] Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    CAS  Article  Google Scholar 

  35. Smith DT, Jackson SR, Rorden C [2005] Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia 43:1288–1296

    Article  Google Scholar 

  36. Meister IG et al [2006] Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience 142:119–123

    CAS  Article  Google Scholar 

  37. Thut G, Pascual-Leone A [2010] Editorial: integrating TMS with EEG: how and what for? Brain Topogr 22:215–218

    Article  Google Scholar 

  38. Silvanto J, Muggleton NG [2008] New light through old windows: moving beyond the ‘virtual lesion’ approach to transcranial magnetic stimulation. Neuroimage 39:549–552

    Article  Google Scholar 

  39. Dugué L, Marque P, VanRullen R [2015] Theta oscillations modulate attentional search performance periodically. J Cogn Neurosci

  40. Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I [1997] Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113[1]:24–32

  41. Corbetta M, Shulman GL [2002] Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:215–229

    Article  CAS  Google Scholar 

  42. Ling S, Carrasco M [2006] Sustained and transient covert attention enhance the signal via different contrast response functions. Vis Res 46:1210–1220

    Article  Google Scholar 

  43. Carrasco M [2011] Visual attention: the past 25 years. Vis Res 51:1484–1525

    Article  Google Scholar 

  44. Posner MI [1980] Orienting of attention. Q J Exp Psychol 32:3–25

    CAS  Article  Google Scholar 

  45. Müller HJ, Findlay JM [1987] Sensitivity and criterion effects in the spatial cuing of visual attention. Percept Psychophys 42:383–399

    Article  Google Scholar 

  46. Liu T, Pestilli F, Carrasco M [2005] Transient attention enhances perceptual performance and fMRI response in human visual cortex. Neuron 45:469–477

    CAS  Article  Google Scholar 

  47. Liu T, Fuller S, Carrasco M [2006] Attention alters the appearance of motion coherence. Psychon Bull Rev 13:1091–1096

    Article  Google Scholar 

  48. Wagner T, Valero-Cabre A, Pascual-Leone A [2007] Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565

    CAS  Article  Google Scholar 

  49. Carrasco M, Yeshurun Y [1998] The contribution of covert attention to the set-size and eccentricity effects in visual search. J Exp Psychol Hum Percept Perform 24:673–692

    CAS  Article  Google Scholar 

  50. Yeshurun Y, Carrasco M [2000] The locus of attentional effects in texture segmentation. Nat Neurosci 3:622–627

    CAS  Article  Google Scholar 

  51. Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ [2010] When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559

    CAS  Article  Google Scholar 

  52. Chica AB, Martín-Arévalo E, Botta F, Lupiáñez J [2014] The spatial orienting paradigm: how to design and interpret spatial attention experiments. Neurosci Biobehav Rev 40:35–51

    Article  Google Scholar 

  53. Pestilli F, Carrasco M [2005] Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vis Res 45:1867–1875

    Article  Google Scholar 

  54. Luck SJ, Hillyard SA, Mouloua M, Hawkins HL [1996] Mechanisms of visual–spatial attention: resource allocation or uncertainty reduction? J Exp Psychol Hum Percept Perform 22:725–737

    CAS  Article  Google Scholar 

  55. Beck DM, Kastner S [2009] Top-down and bottom-up mechanisms in biasing competition in the human brain. Vis Res 49:1154–1165

    Article  Google Scholar 

  56. Desimone R, Duncan JS [1995] Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    CAS  Article  Google Scholar 

  57. Foley JM, Schwarz W [1998] Spatial attention: effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. J Opt Soc Am A 15:1036–1047

    Article  Google Scholar 

  58. Yeshurun Y, Montagna B, Carrasco M [2008] On the flexibility of sustained attention and its effects on a texture segmentation task. Vis Res 48:80–95

    Article  Google Scholar 

  59. Carrasco M, McElree B, Denisova K, Giordano AM [2003] Speed of visual processing increases with eccentricity. Nat Neurosci 6:699–700

    CAS  Article  Google Scholar 

  60. Ivanoff J, Klein RM [2004] Stimulus-response probability and inhibition of return. Psychon Bull Rev 11:542–550

    Article  Google Scholar 

  61. Chica AB, Bartolomeo P, Lupiáñez J [2013] Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123

    Article  Google Scholar 

  62. Reynolds JH, Heeger DJ [2009] The normalization model of attention. Neuron 61:168–185

    CAS  Article  Google Scholar 

  63. Yeshurun Y, Levy L [2003] Transient spatial attention degrades temporal resolution. Psychol Sci 14:225–231

    Article  Google Scholar 

  64. Wolfe JM, Butcher SJ, Lee C, Hyle M [2003] Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform 29:483–502

    Article  Google Scholar 

  65. Connor CE, Egeth HE, Yantis S [2004] Visual attention: bottom-up versus top-down. Curr Biol 14:850–852

    Article  CAS  Google Scholar 

  66. McPeek RM, Keller EL [2004] Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    CAS  Article  Google Scholar 

  67. Corbetta M, Miezin FM, Shulman GL, Petersen SE [1993] A PET study of visuospatial attention. J Neurosci 13:1202–1226

    CAS  Article  Google Scholar 

  68. Fielding J, Georgiou-Karistianis N, White O [2006] The role of the basal ganglia in the control of automatic visuospatial attention. J Int Neuropsychol Soc 12:657–667

    Google Scholar 

  69. Mesulam M-M [1981] A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    CAS  Article  Google Scholar 

  70. Cohen MR, Maunsell JHR [2009] Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600

    CAS  Article  Google Scholar 

  71. Kastner S, Ungerleider LG [2000] Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    CAS  Article  Google Scholar 

  72. Knudsen EI [2007] Fundamental components of attention. Annu Rev Neurosci 30:57–78

    CAS  Article  Google Scholar 

  73. Peelen MV, Heslenfeld DJ, Theeuwes J [2004] Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage 22:822–830

    Article  Google Scholar 

  74. Hahn B, Ross TJ, Stein EA [2006] Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 32:842–853

    Article  Google Scholar 

  75. Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M [2005] An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 25:4593–4604

    CAS  Article  Google Scholar 

  76. Buschman TJ, Miller EK [2007] Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315[5820]:1860–1862

    CAS  Article  Google Scholar 

  77. Busse L, Katzner S, Treue S [2008] Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proc Natl Acad Sci 105:16380–16385

    CAS  Article  Google Scholar 

  78. Katsuki F, Constantinidis C [2014] Bottom-up and top-down attention. Neuroscience 20:509–521

    Article  Google Scholar 

  79. Moore T, Fallah M [2001] Control of eye movements and spatial attention. Proc Natl Acad Sci 98:1273–1276

    CAS  Article  Google Scholar 

  80. Moore T, Armstrong KM [2003] Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    CAS  Article  Google Scholar 

  81. Ibos G, Duhamel JR, Hamed SB [2013] A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J Neurosci 33[19]:8359–8369

  82. Katsuki F [2012] Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 6:1–13

    Article  Google Scholar 

  83. Grent-’t-Jong T, Woldorff MG [2007] Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol 5:0114–0126

    Article  CAS  Google Scholar 

  84. Katsuki F, Constantinidis C [2012] Early involvement of prefrontal cortex in visual bottom-up attention. Nat Neurosci 15:1160–1166

    CAS  Article  Google Scholar 

  85. Schall JD, Paré M, Woodman GF [2007] Comment on‘Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices’. Science [80-.] 318:44

    CAS  Article  Google Scholar 

  86. Ikkai A, Dandekar S, Curtis CE [2016] Lateralization in Alpha-band oscillations predicts the locus and spatial distribution of attention. PLoS One 11:1–17

    Article  CAS  Google Scholar 

  87. Gould IC, Rushworth MF, Nobre AC [2011] Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol 105:1318–1326

    Article  Google Scholar 

  88. Thut G, Nietzel A, Brandt SA, Pascual-Leone A [2006] α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    CAS  Article  Google Scholar 

  89. Worden MS, Foxe JJ, Wang N, Simpson GV [2000] Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63

    CAS  Article  Google Scholar 

  90. Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C [2005] Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662

    Article  Google Scholar 

  91. Wyart V, Tallon-Baudry C [2008] Neural dissociation between visual awareness and spatial attention. J Neurosci 28:2667–2679

    CAS  Article  Google Scholar 

  92. Landau AN, Esterman M, Robertson LC, Bentin S, Prinzmetal W [2007] Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J Neurosci 27:11986–11990

    CAS  Article  Google Scholar 

  93. Grosbras M-H, Paus T [2003] Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur J Neurosci 18:3121–3126

    Article  Google Scholar 

  94. Grosbras M-H, Paus T [2002] Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci 14:1109–1120

    Article  Google Scholar 

  95. Neggers SFW et al [2007] TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements. J Neurophysiol 98:2765–2778

    CAS  Article  Google Scholar 

  96. Turatto M, Sandrini M, Miniussi C [2004] The role of the right dorsolateral prefrontal cortex in visual change awareness. Neuroreport 15:2549–2552

    Article  Google Scholar 

  97. Kalla R, Muggleton NG, Cowey A, Walsh V [2009] Human dorsolateral prefrontal cortex is involved in visual search for conjunctions but not features: a theta TMS study. Cortex 45:1085–1090

    Article  Google Scholar 

  98. Muggleton NG, Juan C-H, Cowey A, Walsh V, O’Breathnach U [2010] Human frontal eye fields and target switching. Cortex 46:178–184

    Article  Google Scholar 

  99. Fuggetta G [2006] Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J Neurophysiol 95:3277–3280

    Article  Google Scholar 

  100. Thut G, Nietzel A, Pascual-Leone A [2005] Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. Cereb Cortex 15:628–638

    Article  Google Scholar 

  101. Beck DM, Muggleton N, Walsh V, Lavie N [2006] Right parietal cortex plays a critical role in change blindness. Cereb Cortex 16:712–717

    Article  Google Scholar 

  102. Ashbridge E, Walsh V, Cowey A [1997] Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia 35:1121–1131

    CAS  Article  Google Scholar 

  103. O’Shea J, Muggleton NG, Cowey A, Walsh V [2004] Timing of target discrimination in human frontal eye fields. J Cogn Neurosci 16:1060–1067

    Article  Google Scholar 

  104. Kalla R, Muggleton NG, Juan C-H, Cowey A, Walsh V [2008] The timing of the involvement of the frontal eye fields and posterior parietal cortex in visual search. NeuroReport 19:1067–1071

    Article  Google Scholar 

  105. Müri R et al [2002] Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Exp Brain Res 143:426–430

    Article  Google Scholar 

  106. Chambers CD, Payne JM, Stokes MG, Mattingley JB [2004] Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217–218

    CAS  Article  Google Scholar 

  107. Dambeck N et al [2006] Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res 1072:194–199

    CAS  Article  Google Scholar 

  108. Hilgetag CC, Théoret H, Pascual-Leone A [2001] Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4:953–957

    CAS  Article  Google Scholar 

  109. Heinen K et al [2011] Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. Eur J Neurosci 33:991–1000

    Article  Google Scholar 

  110. Capotosto P, Babiloni C, Romani GL, Corbetta M [2012] Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG–rTMS study. Cereb Cortex 22:446–454

    Article  Google Scholar 

  111. Krall SC et al [2016] The right temporoparietal junction in attention and social interaction: a transcranial magnetic stimulation study. Hum Brain Mapp 37:796–807

    Article  Google Scholar 

  112. Bestmann S, Ruff CC, Blakemore C, Driver J, Thilo KV [2007] Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17:134–139

    CAS  Article  Google Scholar 

  113. Silvanto J, Muggleton N, Lavie N, Walsh V [2009] The perceptual and functional consequences of parietal top-down modulation on the visual cortex. Cereb Cortex 19:327–330

    Article  Google Scholar 

  114. Sauseng P, Feldheim JF, Freunberger R, Hummel FC [2011] Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention. Front Psychol 2:1–9

    Article  Google Scholar 

  115. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J [2011] Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21[14]:1176–1185

    CAS  Article  Google Scholar 

  116. Dugué L, Roberts M, Carrasco M [2016] Attention reorients periodically. Curr Biol 26[12]:1595–1601

  117. Marshall TR, O'Shea J, Jensen O, Bergmann TO [2015] Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. J Neurosci 35[4]:1638–1647

  118. Herring JD, Thut G, Jensen O, Bergmann TO [2015] Attention modulates TMS-locked alpha oscillations in the visual cortex. J Neurosci 35:14435–14447

    CAS  Article  Google Scholar 

  119. Romei V, Driver J, Schyns PG, Thut G [2011] Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21:334–337

    CAS  Article  Google Scholar 

  120. Chanes L, Quentin R, Tallon-Baudry C, Valero-Cabré A, Valero-Cabre A [2013] Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J Neurosci 33:5000–5005

    CAS  Article  Google Scholar 

  121. Romei V, Thut G, Silvanto J [2016] Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39:782–795

    CAS  Article  Google Scholar 

  122. Wagenmakers E-J, Grasman RPPP, Molenaar PCM [2005] On the relation between the mean and the variance of a diffusion model response time distribution. J Math Psychol 49:195–204

    Article  Google Scholar 

  123. Donkin C, Brown S, Heathcote A, Wagenmakers E-J [2011] Diffusion versus linear ballistic accumulation: different models but the same conclusions about psychological processes? Psychon Bull Rev 18:61–69

    Article  Google Scholar 

  124. Forstmann BU, Ratcliff R, Wagenmakers E-J [2016] Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu Rev Psychol 67:641–666

    CAS  Article  Google Scholar 

  125. Sridharan D, Steinmetz NNA, Moore T, Knudsen EI [2014] Distinguishing bias from sensitivity effects in multialternative detection tasks. J Vis 14:16

    Article  Google Scholar 

  126. Eckstein MP, Thomas JP, Palmer J, Shimozaki SS [2000] A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Percept Psychophys 62:425–451

    CAS  Article  Google Scholar 

  127. Sridharan D, Steinmetz NA, Moore T, Knudsen EI [2017] Does the superior colliculus control perceptual sensitivity or choice bias during attention? Evidence from a multialternative decision framework. J Neurosci 37:480–511

    CAS  Article  Google Scholar 

  128. Bergmann TO et al [2009] Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J Neurophysiol 102:2303–2311

    Article  Google Scholar 

  129. Feurra M, Paulus W, Walsh V, Kanai R [2011] Frequency specific modulation of human somatosensory cortex. Front Psychol 2:13

    Article  Google Scholar 

  130. Nowak M, Hinson E, van Ede F, Pogosyan A, Guerra A, Quinn A, Brown P, Stagg CJ [2017] Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study. J Neurosci 37[17]:4481–4492

    CAS  Article  Google Scholar 

  131. Katayama T, Rothwell JC [2007] Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clin Neurophysiol 118:2506–2511

    Article  Google Scholar 

  132. Ferreri F, Ponzo D, Hukkanen T, Mervaala E, Könönen M, Pasqualetti P, Vecchio F, Rossini PM, Määttä S [2012] Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study. J Neurophysiol 108[1]:314–323

    Article  Google Scholar 

  133. Restuccia D, Ulivelli M, De Capua A, Bartalini S, Rossi S [2007] Modulation of high-frequency [600 Hz] somatosensory-evoked potentials after rTMS of the primary sensory cortex. Eur J Neurosci 26:2349–2358

    Article  Google Scholar 

  134. Rossi S, Hallett M, Rossini PM, Pascual-Leone A [2012] Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:323–330

    Google Scholar 

  135. Ortu E, Ruge D, Deriu F, Rothwell JC [2009] Theta burst stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203

    Article  Google Scholar 

  136. Capotosto P, Babiloni C, Romani GL, Corbetta M [2009] Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 29[18]:5863–5872

  137. Taylor PCJ, Nobre AC, Rushworth MFS [2007] FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399

    Article  Google Scholar 

  138. Bohning DE et al [1998] Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33

  139. Sack AT et al [2002] The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Cogn Brain Res 13:85–93

    CAS  Article  Google Scholar 

  140. Ruff CC et al [2006] Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488

    CAS  Article  Google Scholar 

  141. Blankenburg F et al [2010] Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 20:2702–2711

    Article  Google Scholar 

  142. Ruff CC et al [2008] Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS–fMRI. Cereb Cortex 18:817–827

    Article  Google Scholar 

  143. Westerhausen R, Grüner R, Specht K, Hugdahl K [2009] Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329

    Article  Google Scholar 

  144. Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W [1998] Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121:371–378

    Article  Google Scholar 

  145. Hotson J, Braun D, Herzberg W, Boman D [1994] Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vis Res 34:2115–2123

    CAS  Article  Google Scholar 

  146. Silvanto J, Muggleton NG, Cowey A, Walsh V [2007] Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    Article  Google Scholar 

  147. O’Reardon JP et al [2007] Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62:1208–1216

    Article  Google Scholar 

  148. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, Hermiller MS, Voss JL [2014] Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345[6200]:1054–1057

  149. Harel EV et al [2011] H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World J Biol Psychiatry 12:119–126

    Article  Google Scholar 

  150. Urigüen JA, Garcia-Zapirain B [2015] EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 12:31001

    Article  Google Scholar 

  151. Ruff CC, Driver J, Bestmann S [2009] Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45:1043–1049

    Article  Google Scholar 

  152. Driver J, Blankenburg F, Bestmann S, Ruff CC [2010] New approaches to the study of human brain networks underlying spatial attention and related processes. Exp Brain Res 206:153–162

    Article  Google Scholar 

  153. Weissman JD, Epstein CM, Davey KR [1992] Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clin Neurophysiol Potent Sect 85:215–219

    CAS  Article  Google Scholar 

  154. Tischler H et al [2011] Mini-coil for magnetic stimulation in the behaving primate. J Neurosci Methods 194:242–251

    Article  Google Scholar 

  155. Herrmann CS, Strüber D, Helfrich RF, Engel AK [2016] EEG oscillations: from correlation to causality. Int J Psychophysiol 103:12–21

    Article  Google Scholar 

  156. Bassett DS, Bullmore E [2006] Small-world brain networks. Neuroscience 12:512–523

    Article  Google Scholar 

  157. Bisley JW, Goldberg ME [2010] Attention, intention, and priority in the parietal lobe. Ann Rev Neurosci 33:1–21

    CAS  Article  Google Scholar 

  158. Fecteau JH, Bell AH, Munoz DP [2004] Neural correlates of the automatic and goal-driven biases in orienting spatial attention. J Neurophysiol 92[3]:1728–1737

  159. Baldauf D, Desimone R [2014] Neural mechanisms of object-based attention. Science 344:424–427

    CAS  Article  Google Scholar 

  160. Schenkluhn B, Ruff CC, Heinen K, Chambers CD [2008] Parietal stimulation decouples spatial and feature-based attention. J Neurosci 28:11106–11110

    CAS  Article  Google Scholar 

  161. Farzan F, Barr MS, Sun Y, Fitzgerald PB, Daskalakis ZJ [2012] Transcranial magnetic stimulation on the modulation of gamma oscillations in schizophrenia. Ann N Y Acad Sci 1265:25–35

    Article  Google Scholar 

  162. Sokhadze EM et al [2009] Effects of low frequency repetitive transcranial magnetic stimulation [rTMS] on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39:619–634

    Article  Google Scholar 

  163. Levkovitz Y, Grisaru N, Segal M [2001] Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology 24:608–616

    CAS  Article  Google Scholar 

Page 2

Attention’s effects on brain and behavior. a [Left] Pop-out [bottom-up] search task. Target differs from distractors in a single salient feature [color singleton]; [below] Reaction time [RT] does not increase with number of distractors [set size]. [Middle] Conjunction [top-down] search task without cueing. Target differs from distractors based on a conjunction of features [color and shape]; [below] RT increases with set size. [Right] Conjunction search task with central [top-down] cue indicating location of target; [below] RT increases marginally with set size. b [Left] Schematic of neuronal firing in visual and attentional areas when the neuron’s receptive field [RF, dashed black oval, upper panel] contains a non-salient stimulus [lower left panel and blue trace] versus a salient stimulus [lower right panel and purple trace]. [Middle] Same as in the left panel, but when a top-down cue is used to direct attention to a stimulus within its RF [lower left panel and blue trace] versus outside the RF [lower right panel and purple trace]. [Right] Same as in the left panel, but when a distractor is present along with the target in the neuron’s RF. The suppression of activity caused by the distractor [lower left panel and blue trace] can be alleviated by directing attention specifically to the target [lower right panel and purple trace]. c [Left] Posner cueing paradigm. Fixation is followed by the appearance of a cue. The cue can be a central or top-down cue [arrowhead, upper panel], a neutral cue [middle panel] or a peripheral or bottom-up cue [transient flash, lower panel]. This is followed by the appearance of the stimulus, after a brief delay. Subjects have to detect the presence, identify or localize the target stimulus, which may appear on the cued side [validly cued trials] or not [invalidly cued trials]. [Right, upper] Reaction times typically decrease with increasing target strength [e.g., stimulus contrast]. The reaction times are highest for invalidly cued trials, intermediate for neutrally cued trials, and least for validly cued trials. [Right, lower] Accuracy [% correct] is typically least for invalidly cued trials, intermediate for neutral cues and highest for validly cued trials. d Important nodes in frontal and parietal cortex involved in attention. Areas in blue are primarily involved in top-down control of attention, but also activate, albeit less strongly, during bottom-up attention. Areas in red are primarily implicated in bottom-up, stimulus-driven reorienting [abbreviations expanded in main text].

Video liên quan

Chủ Đề