Torispherical là gì

granted by the Head of my Department or by his representatives. It. is understood ... mining the stresses i n the t o r i s p h e r i c a l head of a pressure vessel was ...

STRESSES IN A TORISPHERICAL HEAD OP A PRESSURE VESSEL BY PHOTOELASTIC COATING METHOD

by

LASZLO IMRE SZEKESSY D i p l . Mech. Eng. T e c h n i c a l U n i v e r s i t y Budapest, 1950.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n t h e Department of MECHANICAL

ENGINEERING

We a c c e p t t h i s t h e s i s as conforming t o the r e q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA October, 1961

In p r e s e n t i n g

this thesis i n p a r t i a l fulfilment of

the requirements f o r an advanced degree a t t h e B r i t i s h Columbia, I agree t h a t the a v a i l a b l e f o r reference

and

University

of

L i b r a r y s h a l l make i t f r e e l y

study.

I f u r t h e r agree t h a t

permission

f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may g r a n t e d by

the

Head o f my

Department o r by h i s

be

representatives.

It. i s understood t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain

s h a l l not

Department o f M f t o l m n i p.a.l The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada.

be a l l o i ^ e d w i t h o u t my

F,ngi r a r i n g Columbia,

Date Vancouver. October. 1.

1961

written

permission.

i

Abstract.

The

use o f the p h o t o e l a s t i c

c o a t i n g method

in

deter-

m i n i n g the s t r e s s e s i n the t o r i s p h e r i c a l head o f a p r e s s u r e v e s s e l was

investigated.

I t was found t h a t the method i s v a l u a b l e

t o o b t a i n the

d i s t r i b u t i o n , d i r e c t i o n , and magnitude o f s t r e s s e s surface The

on

o f any s t r u c t u r e . r e s u l t s o b t a i n e d w i t h the method

showed

greement w i t h the t h e o r e t i c a l i n v e s t i g a t i o n s .

c l o s e a-

The

maximum

s t r e s s e s i n a t o r i s p h e r i c a l head o f a p r e s s u r e v e s s e l i n the t o r u s . The same c o n c l u s i o n

was drawn from

s t r e s s e s were compressive on the o u t e r

the s u r f a c e

t u r e s o f the method.

these

surface.

m o b i l i t y o f the i n s t r u m e n t s , the r e l a t i v e l y

way o f c o a t i n g

occur

the r e -

s u l t s o b t a i n e d w i t h the method. I t a l s o r e v e a l e d , t h a t

The

the

o f the s t r u c t u r e a r e o t h e r

simple fea-

ACKNOWLEDGMENT

The author wishes t o e x p r e s s h i s g r a t i t u d e t o P r o f e s s o r f . 0. Richmond,

Head

of

the Department

E n g i n e e r i n g , f o r t h e guidance

i n completing

of

Mechanical

h i s work, f o r

making t h e i n s t r u m e n t s and l a b o r a t o r i e s f r e e l y a v a i l a b l e and f o r the help i n obtaining f i n a n c i a l

assistance.

ii

TABLE OF CONTENTS Page 1. INTRODUCTION

1

2. DESCRIPTION OF THE PHOTOELASTIC COATING METHOD

3

3. DESCRIPTION OF THE PRESSURE VESSEL AND EQUIPMENT

12

4. RESULTS

15

5. COMPARISON WITH OTHER WORKS ON PRESSURE VESSEL HEADS

21

6. SUMMARY AND CONCLUSION

25

7. REFERENCES

27

8. APPENDIX

29

I. Mathematical

Theory

1. Normal i n c i d e n c e

29

2. O b l i q u e i n c i d e n c e

32

I I . C a s t i n g p l a s t i c s h e e t s f o r the head o f the v e s s e l I I I . D e t e r m i n a t i o n o f the s t r a i n coefficient

by

calibration

38

optical 40

LIST OF TABLES

TABLE

I . MERIDIONAL AND CIRCUMFERENTIAL STRESSES IN THE HEAD OF THE PRESSURE VESSEL AND THE CORRESPONDING STRESS INTENSITY FACTORS

iv

LIST OF FIGURES

FIGURE

Page

1. Schematic Drawing o f R e f l e c t i o n 2. Schematic o f Oblique

Incidence

Polariscope Polariscope

44 45

3. Schematic o f P o l a r i z i n g M i c r o s c o p e

46

4. The

47

Pressure

Vessel

5. C a s t i n g o f P l a s t i c 6. P r e s s u r e

V e s s e l and

48 Dead Weight T e s t e r

49

7. T e s t Setup f o r the Large F i e l d P o l a r i s c o p e

50

8. T e s t Setup f o r the Oblique

51

Incidence

Polariscope

9. T e s t Setup f o r the P o l a r i z i n g M i c r o s c o p e 10.

I s o c l i n i c s on the Head o f the P r e s s u r e V e s s e l

11.

S t r e s s D i s t r i b u t i o n on the Head o f the Vessel

12.

13.

C i r c u m f e r e n t i a l and M e r i d i o n a l

52 53

Pressure 54

Stresses

along a r a d i a l l i n e

55

S t r e s s D i s t r i b u t i o n i n the Torus

56

14. T e s t Setup f o r C a l i b r a t i o n o f P l a s t i c

57

15.

58

C a l i b r a t i o n l i n e of p l a s t i c

List

E

[lb/in ] 2

o f Symbols Used.

Modulus o f E l a s t i c i t y Poisson's r a t i o

V t

[in]

Thickness

C

[in /lb]

Stress o p t i c a l c o e f f i c i e n t

2

Correction

°1>

K=

CE 1

Optical strain sensitivity factor of p l a s t i c

p

V

+L

factors

[in]

Relative retardation of p o l a r i z e d l i g h t

[in/in]

Principal

strains

[lb/in ]

Principal

stresses

[lb/in ]

Normal

[lb/in ]

Shear s t r e s s

R

[in]

R a d i u s o f head o r c y l i n d e r

r

[in]

R a d i u s o f the k n u c k l e

P

Cpsig]

Pressure a c t i n g i n the p r e s s u r e v e s s e l

M

[in/lb]

Bending moment

L

[in]

Distance

F

[lb]

Load

I

[in ]

Moment o f i n e r t i a

6 € 1

; e

2

;

cr r

0~

2

2

2

2

4

stress

vi ~

Fringe value the p l a s t i c

of used

X

[in]

Wave l e n g t h o f l i g h t

0

[degr.]

Angle o f i n c i d e n c e o f l i g h t A n g l e between a normal t o the s u r f a c e o f the s h e l l and the shell axis

cf>

[degr.]

CX

[degr.]

A n g l e between a normal drawn to the s h e l l a x i s from the j u n c t i o n o f the c y l i n d e r and head and a l i n e from a p o i n t on the s u r f a c e o f the head.

[deer ] ^ S w

Compensator r e a d i n g on the large f i e l d polariscope. The d i f f e r e n c e o f r e a d i n g s t a k en a t a p o i n t u s i n g the o b l i q u e i n c i d e n c e p o l a r i s c o p e when the s t r u c t u r e i s l o a d e d and u n l o a d e d .

m

Subscripts. c = cylinder p =

plastic

n = normal o = oblique w = m e t a l , workpiece

1 Introduction.

Stress property

of

a n a l y s i s by p h o t o e l a s t i c i t y depends temporary

b i r e f r i n g e n c e possessed

double by

refraction

upon

the

or

artificial

c e r t a i n transparent

materials.

T h i s b i r e f r i n g e n c e i s p r o p o r t i o n a l to s t r e s s and hence i t i s p o s s i b l e t o deduce

the s t r e s s

o p t i c a l p r o p e r t i e s . Ordinary

from the o b s e r v a t i o n

methods o f

of

photoelastic

the

stress

a n a l y s i s use a p l a s t i c model o f the s t r u c t u r e under a n a l y s i s . A newer t e c h n i q u e uses a c o a t i n g o f t r a n s p a r e n t m a t e r i a l cemented

t o the m e t a l

t h a t the p h o t o e l a s t i c e f f e c t s t r a i n on the s u r f a c e

part

under i n v e s t i g a t i o n so

observed

i s a f u n c t i o n of

the

o f the s t r u c t u r e . I n t h i s i n v e s t i g a t i o n

the coating, method i s used i n a study o f the

stress

distri-

The use o f b i r e f r i n g e n t c o a t i n g i n p h o t o e l a s t i c

inves-

bution i n a toroidal

t i g a t i o n was who

photoelastic

shell.

initiated

by Mesnager [ F r a n c e ] i n

1930

used a b i r e f r i n g e n t l a y e r o f g l a s s . There was no

factory

bond t o the

structure investigated

and

r e s u l t s were n o t produced a t t h a t time. S e v e r a l develop the c o a t i n g method and Oppel [Germany] 1937

by

I n the

United

satis-

practical attempts t o

Mabboux [France]

1932

[2],

[ 3 ] , were u n s u c c e s s f u l f o r p r a c t i c a l

use, because the c o a t i n g m a t e r i a l and the bonding was

[1],

still

had low

sensitivity,

insufficient. States

o f America

D'Agostino,

Drucker,

2 L i n , and Mylonas performed

e x t e n s i v e s t u d i e s o f the b e h a v i o u r

o f b i r e f r i n g e n t c o a t i n g s [4»5] and developed i t as a p r a c t i c a l t o o l f o r s t r e s s a n a l y s i s . They p r e s e n t e d the r e s u l t s o f t h e i r work a t the c o n v e n t i o n o f IUTAM i n B r u s s e l s i n 1954. P r a c t i c a l r e s u l t s a c h i e v e d on the i n d u s t r i a l Prance were p u b l i s h e d by Zandman [5»6].

The

level

coating

was u s e d on v a r i o u s s t r u c t u r a l m a t e r i a l s i n b o t h

in

method

elastic

and

p l a s t i c ranges o f d e f o r m a t i o n . The c o a t i n g m a t e r i a l proved t o be s t a b l e i n time and temperature. The bond was e f f e c t i v e thus p r o v i d i n g the n e c e s s a r y t r a c t i o n between metal.

the p l a s t i c and

the

3 D e s c r i p t i o n of the P h o t o e l a s t i c C o a t i n g Method.

The

s t r u c t u r a l p a r t t o he

of b i r e f r i n g e n t material s t r a i n s are surface

transmitted

i s provided

refringence

due

analysed i s coated with a l a y e r

cemented to the to the p l a s t i c

surface

[7,8].

between the metal and

t o s t r a i n i s observed

so t h a t

A

reflecting

the p l a s t i c .

by

a

the

Bi-

reflection

po-

l a r i s c o p e so t h a t the l i g h t r a y passes twice

through

p l a s t i c l a y e r . Because o f t h i s , the b a s i c law

of p h o t o e l a s t i -

c i t y expressing and

the r e l a t i v e r e t a r d a t i o n between the

extraordinary

stresses i s

r a y and

the

ordinary

d i f f e r e n c e between the p r i n c i p a l

[9,10]

i s the r e l a t i v e r e t a r d a t i o n ,

where

C = i s the

stress optical c o e f f i c i e n t

and

are p r i n c i p a l s t r e s s e s

OT>

t = i s the

thickness

o f the p l a s t i c

When the p a r t i s s t r a i n e d , b l a c k are v i s i b l e

and

through the a n a l y z e r p l a t e o f

u s i n g white l i g h t . I f the p o l a r i z i n g axes and

the

analyzer

p l a t e s are c r o s s e d ,

i s o c l i n i c s . I s o c l i n i c s are r e c t i o n s o f the as the

layer coloured the

fringes

polariscope

o f the p o l a r i z e r

the b l a c k f r i n g e s r e p r e s e n t

the l o c i o f p o i n t s where the d i -

p r i n c i p a l s t r e s s e s are

c o n s t a n t and the

d i r e c t i o n s o f the p o l a r i z i n g axes of the

same

polariscope,

4 The

d i r e c t i o n s of the p r i n c i p a l stresses therefore

d e t e r m i n e d a t e v e r y p o i n t because t h e c r o s s e d

can

analyzer

p o l a r i z e r p l a t e s c a n be r o t a t e d s i m u l t a n e o u s l y . d i r e c t i o n s of the p r i n c i p a l s t r e s s e s a t every

be and

Knowing point

the

i ti s

p o s s i b l e t o p l o t ; t h e s t r e s s t r a j e c t o r i e s [ i s o s t a t i c s ] [9»10]. When t h e q u a n t i t a t i v e e v a l u a t i o n o f t h e f r i n g e s i s c o n s i d e r e d t h e i s o c l i n i c s s h o u l d be e l i m i n a t e d . T h i s

i s achieved

by i n s e r t i n g two q u a r t e r wave p l a t e s i n t h e p a t h

of

the

p o l a r i s e d l i g h t . The q u a r t e r wave p l a t e s a r e made o f f r i n g e n t m a t e r i a l o f such a t h i c k n e s s t h a t

bire-

the r e t a r d a t i o n

between t h e o r d i n a r y and e x t r a o r d i n a r y r a y s i s one

quarter

o f t h e wave l e n g t h o f t h e monochromatic l i g h t u s e d . One q u a r t e r wave p l a t e i s p l a c e d between

the p o l a r i z e r

p l a t e and t h e p l a s t i c , t h e o t h e r between t h e p l a s t i c and

t h e a n a l y z e r p l a t e [ F i g . l . ] . The two q u a r t e r

convert

coat

plates

the plane p o l a r i z e d l i g h t t o c i r c u l a r p o l a r i z e d l i g h t .

I n t h e case o f white l i g h t t h i s i s n o t q u i t e t r u e

since the

l i g h t becomes e l l i p t i e a l l y p o l a r i z e d , b u t t h e d i f f e r e n c e i s v e r y s m a l l and h a s l i t t l e

e f f e c t on t h e s c a l e o f i n t e r f e r e n c e

c o l o u r s [12]. The

f r i n g e s seen i n t h e c i r c u l a r p o l a r i z e d

are coloured.

I f the incidence of the c i r c u l a r

white

polarized

l i g h t i s normal, these coloured f r i n g e s a r e the l o c i points

where t h e d i f f e r e n c e o f t h e p r i n c i p a l

light

stresses

of i s

5 constant. A black f r i n g e i n the c i r c u l a r p o l a r i z e d l i g h t i n dicates that at those points the difference of the p r i n c i p a l stresses i s zero. As shown i n Appendix I, by determining the retardations at points on the p l a s t i c the stresses i n the structure

are

given by the equation

[Cn

-cr

1

w

o ] 2'w

-

°

w

"1+1/

n

2 t l

w

where

CE K = 2.+1/ P

i

s

^

t i e

OP^-- ^ s t r a i n 0

sensitivity

f a c t o r of the p l a s t i c . l t i s obtained by c a l i b r a t i o n .

E = modulus of e l a s t i c i t y 1/= Poisson s r a t i o 1

& = r e l a t i v e retardation The h a l f of the p r i n c i p a l stress difference so defined, gives the maximum shear s t r e s s , as known from the theory elasticity

of

[13]. Tmax = I

[ [ T

1 "

C r

2

]

Therefore the coloured f r i n g e s sometimes

are c a l l e d the

constant shear stress l i n e s . In p a r t i c u l a r state of s t r e s s , i f the d i r e c t i o n p r i n c i p a l stresses and t h e i r difference

determined

of the by the

6 f r i n g e s i s known, the

individual p r i n c i p a l stresses

determined m a t h e m a t i c a l l y . O f t e n the

stresses

are

l o n g f r e e b o u n d a r i e s such as i n the

case

n o t c h where the

boundary

the

s t r e s s normal to the

f r i n g e v a l u e g i v e s the

t h i s i s not

the

tangential

©ase a d d i t i o n a l

of

may

he

sought

a hole is

a-

or

zero,

stress d i r e c t l y .

a and

When

p h o t o e l a s t i c measurements are

necessary. I f the the

fringes

polarized

l i g h t has

o b l i q u e angle o f i n c i d e n c e

o b t a i n e d w i l l r e p r e s e n t the

secondary p r i n c i p a l s t r e s s e s are

an

d e f i n e d as

the

difference

p r i n c i p a l stresses

c h o o s i n g the

resulting

p l a n e of i n c i d e n t

p r o p e r l y i t i s always p o s s i b l e stresses stresses.

i n t o the

[ o r two

stresses

can

chosen as

be

of the

principal the

individual

normal principal

angle of o b l i q u e i n c i d e n c e i s

individual principal stresses.

analyzer plates a t 45°

rays [Fig.2].

light

reading with

ment used i s a g a i n a r e f l e c t i o n p o l a r i s c o p e ,

c r o s s e d and

reflected

r e s u l t i n g i n great s i m p l i f i c a t i o n s i n

p r e s s i o n s f o r the

and

direc-

[14].

p r a c t i c a l reasons the 45°

The

being set with t h e i r to the 45°

the

given

secondary

o b l i q u e r e a d i n g s ] the calculated

and

from

to i n c l u d e one of the p r i n c i p a l

Having t h i s a d d i t i o n a l

reading,

For

difference

the

[9] .Secondary p r i n c i p a l s t r e s s e s

s t r e s s components l y i n g i n a plane normal to the t i o n . By

of

p l a n e of the

setting

of

the

the

The

ex-

instrupolarizer

polarizing

axes

i n c i d e n t and r e f l e c t e d

the

p o l a r i z i n g axes

was

7 r e q u i r e d by the q u a r t z wedge compensator. T h i s compensator i s s i t u a t e d ahead o f t h e a n a l y z e r p l a t e i n the p a t h . The

plane of i n c i d e n t

and

reflected

reflected

light

always c o i n c i d e w i t h one o f the p r i n c i p a l

stress

The

to

compensator v a l u e so o b t a i n e d

refers

s t r e s s p e r p e n d i c u l a r t o the plane o f i n c i d e n t

light

should

directions.

the

principal

and

reflected

l i g h t . The magnitude o f t h e p r i n c i p a l s t r e s s e s

i s given

by

the e q u a t i o n s as d e r i v e d i n Appendix I .

w = ' 2

[ CT ] 2

where m^ and m due

2

3 6

x

1 0

"

7

IT"

= 2.36 x I O "

w

7

-If-

^

[ m

T " ]

+

2

+

a r e the compensator r e a d i n g

t o l o a d [15].

The o b l i q u e i n c i d e n c e

^

]

changes o c c u r r i n g

r e a d i n g s are

always a f t e r a l l the normal r e a d i n g s a r e completed

and

taken the

d i r e c t i o n s , o f the p r i n c i p a l s t r e s s e s a r e known. There a r e d i f f e r e n t ways t o e v a l u a t e

the r e t a r d a t i o n o r

f r i n g e v a l u e and hence the magnitude o f p r i n c i p a l The

first,

and l e a s t a c c u r a t e , i s the comparison o f the f r i n g e

c o l o u r t o a s t a n d a r d c o l o u r s c a l e which i s r e l a t e d through count

stresses.

calibration.

I f a black

the number o f s u c c e s s i v e

to s t r a i n

f r i n g e i s p r e s e n t , one

can

" t i n t o f passage" f r i n g e s . T h e

t i n t o f passage i s the c o l o u r o c c u r r i n g a t the t r a n s i t i o n from

8 red to blue.

This dull

purple colour i s very

sensitive

s m a l l changes i n the d i f f e r e n c e o f t h e p r i n c i p a l gives

accurate

stress

investigation l i e s

readings

on a t i n t

o n l y when

o f passage.

to

s t r e s s e s but

the p o i n t under

O f t e n the s t r e s s i s

not h i g h enough to produce s t r a i n s c o r r e s p o n d i n g

to

one

f r i n g e o r the p o i n t under i n v e s t i g a t i o n l i e s between s u c c e s s i v e f r i n g e s . I n t h i s case an o p t i c a l compensator

should

used, which produces a t i n t o f passage a t any p o i n t b i r e f r i n g e n t p l a s t i c , a t any v a l u e o f s t r a i n .

o f the

The

a c c u r a t e method o f d e f i n i n g f r a c t i o n s o f f r i n g e s

be

most

i s t o use

photometers. The

method o f a p p l i c a t i o n o f b i r e f r i n g e n t l a y e r s depends

on the shape o f the s t r u c t u r e required

[ 1 6 ] . F o r plane

and

also

on

the

accuracy

s u r f a c e s , p l a s t i c sheets are a v a i l -

a b l e i n v a r i o u s t h i c k n e s s . These s h e e t s a r e bonded s u r f a c e by means o f an a d h e s i v e .

to

the

To p r o v i d e a r e f l e c t i v e s u r -

f a c e a t t h e i n t e r f a c e o f the s t r u c t u r e and c o a t i n g , h e s i v e u s u a l l y i s mixed w i t h aluminum powder.

In

the adcase

s u r f a c e o f the metal i s ground t h i s i s n o t n e c e s s a r y

the

because

the d i f f u s e r e f l e c t i o n p r o v i d e d by the s u r f a c e , i s s a t i s f a c t o r y f o r the o b s e r v a t i o n o f the f r i n g e s . When a h i g h of accuracy

i s n o t r e q u i r e d the p l a s t i c c a n be

brushing l i q u i d p l a s t i c

degree

applied

by

on the s u r f a c e o f the s t r u c t u r e , and

p o l y m e r i z i n g i t by heat a p p l i e d t o the coated a r e a [ 1 7 ] . F o r q u a n t i t a t i v e a n a l y s i s the t h i c k n e s s o f the c o a t must be a l s o

measured a t the p o i n t under i n v e s t i g a t i o n . When the s u r f a c e i s c o m p l i c a t e d i t i s b e s t t o use contoured

contoured

sheets.

For

sheets the p l a s t i c i s c a s t on a g l a s s

plate

and

t a k e n from the g l a s s when p a r t i a l l y p o l y m e r i z e d

[18]..

In

t h i s s t a t e the p l a s t i c

sheet i s e a s i l y formed

without

i n t r o d u c i n g i n i t i a l b i r e f r i n g e n c e . The sheet i s moulded over the r e q u i r e d s u r f a c e , and i s l e f t p o l y m e r i z a t i o n i s completed the moulded p l a s t i c

on the s u r f a c e u n t i l

[ g e n e r a l l y 24 hours ].When h a r d ,

i s bonded t o the s u r f a c e o f the s t r u c t u -

r e w i t h a cement, as f o r the sheet p l a s t i c . When s t r i p i s s e t a s i d e f o r c a l i b r a t i o n purposes.

c a l c u l a t i o n . Measuring

casting, a

I t i s bonded t o

a t e s t b a r i n which the s u r f a c e s t r a i n s may be

obtained

the r e t a r d a t i o n i n the p l a s t i c ,

strain optical coefficient as

o f the p l a s t i c c a n be

by the

determined,

shown i n Appendix I I I , u s i n g the e q u a t i o n

* " 2tA£

±

-e ] 2

F o r h i g h s t r e s s g r a d i e n t s or sharp c u r v a t u r e s , r i z i n g microscope

i s used

[Fig.3].

objective, a pair of crossed Nicols, and

the

This one

consists

a polaof

compensator wedge

one o c u l a r . The l i g h t source may be e i t h e r a t t a c h e d

the tube,

an

to

o r t o a s e p a r a t e s t a n d . The t o t a l m a g n i f i c a t i o n i s

about twenty t i m e s . The

a c c u r a c y o f the measurements taken w i t h the p o l a r i -

10 scope i s d e f i n e d by the a c c u r a c y

w i t h which the r e a d i n g s c a n

be made on the compensator. The chieved

compensation.''on the l a r g e f i e l d p o l a r i s c o p e

i s a-

by the q u a r t e r wave p l a t e method; the a n a l y z e r

i s ro-

t a t e d t o o b t a i n compensation, w i t h a q u a r t e r wave p l a t e between the a n a l y z e r and the p l a s t i c . A r o t a t i o n o f 180° caus\ es one wave l e n g t h r e t a r d a t i o n which c o r r e s p o n d s t o one f r i n g e . The

s c a l e c a n be r e a d a t every two degrees.Thus the s m a l l e s t

change which c a n be s t i l l

observed i s one

ninetieth

of

a

fringe. The

oblique

i n c i d e n c e p o l a r i s c o p e and the

microscope have a q u a r t z wedge compensator.

polarizing

For

this

d i v i s i o n s c a l e c o r r e s p o n d s t o one f r i n g e change. r e a d a t each h a l f g r a d u a t i o n

It

a 35 c a n be

and t h e r e f o r e the s m a l l e s t change

t o be n o t i c e d w i l l be one s e v e n t i e t h o f a f r i n g e . Up to t h i s p o i n t the r e i n f o r c i n g e f f e c t o f the was n o t i n c l u d e d i n the e q u a t i o n s d e t e r m i n i n g i n the s t r u c t u r e . An i n v e s t i g a t i o n by Zandman,

the

plastic stresses

Redner

R i e g n e r [21] showed t h a t f o r t h i n c o a t i n g i n plane

and stress

t h i s r e i n f o r c i n g e f f e c t i s n e g l i g i b l e . I n case o f bending o r combined s t r e s s e s o r when the t h i c k n e s s s m a l l compared t o t h e t h i c k n e s s e f f e c t c a n n o t be n e g l e c t e d

o f metal

o f the this

coat

i s not

reinforcing

and must be accounted

f o r . The

i n f l u e n c e o f the c o a t on the s t r a i n s and so on b i r e f r i n g e n c e

11 i s g i v e n as a c o r r e c t i o n f a c t o r p l o t t e d as a f u n c t i o n o f the ratio

of p l a s t i c

t h i c k n e s s to metal t h i c k n e s s

mentioned r e f e r e n c e . T h i s c o r r e c t i o n f a c t o r i s important

when t h i n p l a t e s are s u b j e c t e d

in

the above especially

to bending.

12 D e s c r i p t i o n o f the P r e s s u r e

V e s s e l and

Equipment Used.

The s t r u c t u r e under i n v e s t i g a t i o n was a s m a l l v e s s e l obtained

pressure

c o m m e r c i a l l y [ F i g . 4] • Two t o r i s p h e r i c a l d i s h e d

heads were welded to a c y l i n d e r , which was r o l l e d s t e e l p l a t e and welded a l o n g

the g e n e r a t i n g

was complete; the o t h e r c o n t a i n e d

from

l i n e . One

two tapped h o l e s

a head

for f i l l -

i n g and p r e s s u r i z i n g the v e s s e l . The p h o t o e l a s t i c i n v e s t i g a t i o n was made on the complete head, and t o

a v o i d r e i n f o r c i n g a t the j o i n t o f t h i s head t o

the c y l i n d e r , the weld was ground f l u s h to the p a r e n t m a t e r i a l s o u t s i d e and i n s i d e . Care was t a k e n a l s o t h a t the c y l i n d e r was

s u f f i c i e n t l y l o n g so t h a t the o t h e r

end c l o s u r e

had no

e f f e c t on the s t r e s s e s i n the head under i n v e s t i g a t i o n . The m a t e r i a l o f the v e s s e l was m i l d s t e e l w i t h a s t r e n g t h o f 30000 p s i .

The

modulus

of

elasticity

yield was

30 x 1 0 p s i . 6

The w a l l t h i c k n e s s , one e i g h t h o f an i n c h , was i n the heads and the c y l i n d e r , and s i n c e torus

[ k n u c k l e ] p a r t o f the head was

v e s s e l c o u l d n o t be c o n s i d e r e d the r a d i u s o f c u r v a t u r e

uniform

the r a d i u s o f the

s m a l l , t h i s p a r t o f the

as a t h i n s h e l l . The r a t i o o f

t o the w a l l t h i c k n e s s was

|.84

the r a t i o f o r t h i n s h e l l s i s d e f i n e d as above i s t e n .

and The

13 other

p a r t s , the s p h e r i c a l cap and the c y l i n d e r ,

s h e l l s having a radius of curvature and

to thickness

were

r a t i o o f 64

32 r e s p e c t i v e l y . To make t h e p h o t o e l a s t i c measurements e a s i e r , t h e

was

thin

mounted on a stand and p r o v i s i o n s was made so

that

c o u l d he r o t a t e d about an a x i s a t the mid l e n g t h cylinder Due

vessel

of the

[Pig.6,7]. t o the double c u r v a t u r e

o f t h e head o f t h e p r e s s u r e

v e s s e l i t was n e c e s s a r y t o use the moulding

technique

to c o v e r i t w i t h a p l a s t i c l a y e r , as d e s c r i b e d A p a r t i a l l y p o l y m e r i z e d p l a s t i c sheet was

showed no r e s i s t a n c e a g a i n s t

obtained

forming and was formed

head w i t h o u t i n t r o d u c i n g i n i t i a l b i r e f r i n g e n c e . p l a s t i c hardened, i t was cemented t o t h e head r e s i n cement

on the

When by an

the'y epoxy

[19].

s t r a i n o p t i c a l c o e f f i c i e n t o f the

plastic

p l a s t i c . A d e t a i l e d d e s c r i p t i o n o f the c a l i b r a t i o n

was obcast

i s given

t h e Appendix. The

in

by

sheet

t a i n e d by c a l i b r a t i o n u s i n g a c a l i b r a t i o n s t r i p from the

in

[17]

i n Appendix I I .

c a s t i n g l i q u i d p l a s t i c on a l e v e l g l a s s s u r f a c e . T h i s

The

i t

p r e s s u r e v e s s e l was f i l l e d w i t h water w h i c h h a d been

t h e open a i r b e f o r e

f i l l i n g to release

A h i g h p r e s s u r e rubber hose p r o v i d e d

the absorbed a i r .

the connection

the p r e s s u r e v e s s e l and a dead weight t e s t e r [ P i g . 6 ] , produced t h e r e q u i r e d p r e s s u r e .

Before applying

between which

any p r e s s u r e ,

14 the system was "bled o f a i r a t the h i g h e s t The

point.

dead weight t e s t e r remained connected t o the p r e s s -

ure v e s s e l throughout the t e s t s and i t s p i s t o n to secure u n i f o r m p r e s s u r e

while

was

rotated

the p h o t o e l a s t i c

measure-

ments were taken. A l l measurements were taken a t 500 p s i g . The

p h o t o e l a s t i c p a r t o f the experiment

the i n v e s t i g a t i o n o f a s e t o f p o i n t s a l o n g

consisted a

radial

from the c e n t e r o f the head t o the c y l i n d e r , d e f i n e d CA [Pig.4].

angle from

a

Measurements were t a k e n a t every

[ X = 0° t o

0[= 20°

= 20°

a = 90°

to

and a t every f o u r

Instruments used were the l a r g e f i e l d

line by the degree

degrees

from

polariscope,which

was used t o determine the d i r e c t i o n s and the d i f f e r e n c e the p r i n c i p a l s t r e s s e s [Fig.7]>

the o b l i q u e i n c i d e n c e

r i s c o p e , which s u p p l i e d t h e v a l u e s cipal

of

of pola-

f o r the i n d i v i d u a l

prin-

s t r e s s e s [ F i g . 8 ] , and t h e p o l a r i z i n g microscope, which

provided

control values

large f i e l d polariscope

t o check the v a l u e s

obtained

by t h e

[Fig.9].

When c a l c u l a t i n g the s t r e s s e s bending had t o be i n t r o d u c e d ,

a

correction factor f o r

because bending moment e x i s t e d

i n the t o r u s due t o the i n t e r n a l p r e s s u r e .

The

f a c t o r was o b t a i n e d

[21]

from F i g 2 i n r e f e r e n c e

e x i s t i n g r a t i o o f p l a s t i c t o metal

thickness.

correction for

the

15 Results.

The

d i r e c t i o n s o f t h e p r i n c i p a l s t r e s s e s were e s t a b l i s h -

ed f i r s t w i t h t h e use o f the l a r g e the

f i e l d polariscope

q u a r t e r wave p l a t e s . I t was found t h a t w i t h i n

without

a

circle

drawn a t [X = 32° around the a x i s o f t h e s h e l l on the s p h e r i cal

c a p , every p o i n t was i s o t r o p i c , i . e . the p r i n c i p a l s t r e s s -

es were e q u a l i n a l l d i r e c t i o n s . A n o t h e r dark r i n g appeared i n the f i e l d riscope

a t [X = 10° where the p o i n t s

of

proved t o

be

which meant t h a t b o t h p r i n c i p a l s t r e s s e s became At t h e o t h e r p a r t s

o f t h e head

a

stresses

that

the

were m e r i d i o n a l

[Fig.10].

direction

pola-

singular,

zero.

r a d i a l dark

c o i n c i d i n g always w i t h t h e p o l a r i z i n g a x i s o f plate indicated

the

of

the

line polarizer

the p r i n c i p a l

and c i r c u m f e r e n t i a l

respectively

The m a t h e m a t i c a l l y l a r g e r p r i n c i p a l s t r e s s ,

CJ]_

was c i r c u m f e r e n t i a l between CX = 0 ° and OC= 1 0 ° ; and changed to m e r i d i o n a l

between

CX= 1 0 ° and

d

= 32°

These o b s e r v a t i o n s l e d t o the c o n c l u s i o n d i o n a l and c i r c u m f e r e n t i a l the

t h a t the

meri-

stresses along a r a d i a l l i n e

were

p r i n c i p a l s t r e s s e s , and so the maximum o f m e r i d i o n a l

circumferential stresses As

s t r e s s e s were determined, g i v i n g

and

the maximum

a t the p o i n t . part

o f the q u a n t i t a t i v e

a n a l y s i s normal and

oblique

16 i n c i d e n c e measurements were

taken.

When t h e p l a s t i c was viewed w i t h t h e l a r g e f i e l d

pola-

riscope set f o r c i r c u l a r l y polarized l i g h t field,three

areas

showed dark p a t t e r n s . One a r e a was w i t h i n t h e c i r c l e

drawn

at

[X = 32° around t h e a x i s o f the s h e l l on

cap.

the s p h e r i c a l

The o t h e r was a r i n g a t OC = 1 0 ° , and the t h i r d a n o t h e r

ring at field,

oi = 0 ° .

these

principal

Due t o t h e c i r c u l a r l y p o l a r i z e d

dark areas

light

i n d i c a t e d t h a t the d i f f e r e n c e o f the

s t r e s s e s was zero t h e r e . F a r t h e r i n v e s t i g a t i o n how-

ever showed t h a t the p o i n t s on the r i n g a t

ct

= 10°

s i n g u l a r , and t h e p o i n t s on the s p h e r i c a l cap w i t h i n c i r c l e a t the angle Oi

= 0° were The

Oi = 32° and the p o i n t s

f r i n g e v a l u e i n c r e a s e d from

on the r i n g a t

Oi = 0 ° , t o zero

reached i t s

at

i n c r e a s e d a g a i n from

to

zero a t Oi = 3 2 ° . The d i f f e r e n c e o f the p r i n c i p a l

Oi

oi = 10° t o Oi =17°

OC = 1 0 ° .

It

not reach

the

isotropic.

maximum a t OK= 5»5°» t h e n decreased

did

were

one f r i n g e a t any p o i n t from

and

Oi

decreased strains

= 0°

to

= 90° which means t h a t the r e t a r d a t i o n measured was a l -

ways l e s s than one wave l e n g t h o f , t h e white Oblique

i n c i d e n c e measurements were made a f t e r the d i -

r e c t i o n o f the p r i n c i p a l large f i e l d

light.

s t r e s s e s was determined

p o l a r i s c o p e . The plane

with

the

o f i n c i d e n t and r e f l e c t e d

l i g h t o f the o b l i q u e i n c i d e n c e p o l a r i s c o p e was f i r s t a l i g n e d to

c o i n c i d e w i t h a m e r i d i o n a l l i n e and the

readings

so ob-

17 t a i n e d were u s e d t o determine the i n d i v i d u a l c i r c u m f e r e n t i a l s t r e s s . S i m i l a r l y i t was a l i g n e d vious

perpendicular

pre-

d i r e c t i o n t o s u p p l y the v a l u e s f o r the c a l c u l a t i o n

the m e r i d i o n a l

of

s t r e s s e s . Each measurement was t a k e n when the

p r e s s u r e v e s s e l was l o a d e d and a g a i n when i t The

t o the

was

unloaded.

s i g n o f t h e compensator v a l u e s was d e f i n e d by t h e i r l o c -

a t i o n from the zero f r i n g e i n the compensator wedge the a l g e b r a i c reading

. s u b t r a c t i o n o f the no l o a d r e a d i n g

and from

by the

t a k e n under l o a d .

A d i m e n s i o n l e s s s t r e s s i n t e n s i t y f a c t o r was

d e f i n e d as

the r a t i o o f t h e s t r e s s measured t o the c i r c u m f e r e n t i a l s t r e s s i n the c y l i n d e r remote from the end c l o s u r e s Stress Intensity = —

where

C T = s t r e s s measured p = p r e s s u r e i n the v e s s e l R=

radius

t =

wall thickness

Q

Q

This

o f the c y l i n d e r o f the c y l i n d e r

s t r e s s i n t e n s i t y f a c t o r i s g i v e n w i t h the s t r e s s v a l u e s

a t each p o i n t were d e f i n e d

on the head i n Table I . The p o i n t s by the angle

on the head

OC , but the c o r r e s p o n d i n g

f o r the a n g l e [£> were a l s o i n c l u d e d ,

because i t was

t h a t t h i s a n g l e was more o f t e n used i n the l i t e r a t u r e .

values found

18 The

s t r e s s e s were a l s o p l o t t e d on l i n e s

t o the head a t each p o i n t tem

o f angle OC v e r s u s The

maximum

perpendicular

[ P i g . 1 1 ] , and i n a c o o r d i n a t e

sys-

the stresses [Pig.12].

meridional

stress

of

o c c u r r e d i n the t o r u s p a r t o f the head a t

O^j CK

= -48500 p s i =5.5°,

while

the maximum c i r c u m f e r e n t i a l s t r e s s r e a c h e d i t s maximum v a l u e of

Q~

6

= -33500 p s i a t

OC = 5 ° . Both

p r e s s i v e on t h e o u t e r s u r f a c e o f the head.

s t r e s s e s were com-

19 Table I.

M e r i d i o n a l and

C i r c u m f e r e n t i a l S t r e s s e s i n the Head

o f the P r e s s u r e V e s s e l and

the

Corresponding

Stress Intensity Factors.

Points by

a 0.0

defined angles

4> 90

1.0 1.2

80

2.0 2.4

70

3.0 3.5

60

4.0 4.5

50

5.0 5.5

40

6.0

S t r e s s e s 10 Circumferential

psi

Meridional

Stress Intensity Factors Circumferential

Meridional

-2.00

-2.00

-1.25

-1.25

-2.65

-2.90

-1.66

-1.81

-2.70

-3.05

-1.69

-1.91

-2.95

-3.50

-1.84

-2.19

-3.00

-3.75

-1.88

-2.34

-3.20

-4.05

-2.00

-2.53

-3.25

-4.30

-2.03

-2.69

-3.30

-4.50

-2.06

-2.81

-3.30

-4.70

-2.06

-2.94

-3.35

-4.78

-2.10

-2.98

-3.30

-4.85

-2.06

-3.03

-3.18

-4.75

-1.99

-2.97

6.3

30

-3.10

-4.70

-1.94

-2.94

7.0

28

-2.85

-4.45

-1.78

-2.78

-2.50

-3.65

-1.56

-2.28

-2.35

-3.30

-1.47

-2.06

-2.10

-2.65

-1.31

-1.66

-1.50

-1.50

-0.94

-0.94

8.0 8.4

27

9.0 10.0

26

20 Table I .

Points by

defined angles

a 11.0

25 24

13.0 14.0

23

15.0 15.4

22

16.0 17.0

21

18.0 18.6

20

19.0

Stress Intensity

4 S t r e s s e s 10 Circumferential

12.0 12.6

[continued]

psi

Meridional

Factors CircumMeridional ferential

-0.85

0.00

-0.53

0.00

-0.20

1.00

-0.13

0.63

0.10

1.50

0.06

0.94

0.55

1.80

0.34

1.12

0.70

2.60

0.44

1.63

0.95

2.75

0.59

1.72

1.05

2,85

0.66

1.78

1.20

2.95

0.75

1.84

1.30

3.10

0.81

1.94

1.40

3.15

0.88

1.97

1.41

3.10

0.88

1.94

1.42

3.07

0.84

1.92

20.0

19

1.45

2.95

0.90

1.84

22.4

18

1.50

2.60

0.94

1.63

24.0

17

1.47

2.35

0.92

1.47

27.0

16

1.35

1.80

0.84

1.12

1.30

1.65

0.81

1.03

28.0 30.0

15

1.15

1.40

0.72

0.88

32.0

14

0.97

1.18

0.61

0.74

0.86 • • • 0.71 • • • 0.57

0.94 •

0.54 • •

0.59 • • • 0.48 • • • 0.37

36.0 • • • 54.0 • • • 90.0

• • • • 7 • • • • 0

*

• 0.76 t • *

0.59

*

0.44 • • • 0.36

21 Comparison w i t h o t h e r works on p r e s s u r e v e s s e l heads.

I n o r d e r t o a s s e s s the a c c u r a c y o f the p r e s e n t

stress

i n v e s t i g a t i o n , the r e s u l t s were compared to v a l u e s

obtained

i n the l i t e r a t u r e . These v a l u e s were a r r i v e d a t by

calcula-

t i o n s , u s i n g the t h i n s h e l l t h e o r y , and

the dimensions

of

the v e s s e l s a t i s f i e d the c o n d i t i o n s o f t h i n s h e l l s . T h e v e s s e l i n the p r e s e n t i n v e s t i g a t i o n was

not a t h i n s h e l l .

f o r e the d i s t r i b u t i o n o f the s t r e s s e s and

There-

the maximum s t r e s s

i n t e n s i t y f a c t o r s were compared. The heads i n two

o f the work

t o r i s p h e r i c a l and one was The

used as comparisons

were

ellipsoidal.

e l l i p s o i d a l head i n v e s t i g a t i o n was

Kraus, B i l o d e a u and Langer [ 2 4 ] .

published

by

R e s u l t s were p r e s e n t e d

t h i s paper f o r an e l l i p s o i d a l head h a v i n g a two

t o one

in

ratio

o f the major and minor axes. S t r e s s i n t e n s i t y i n d e x e s were t a b u l a t e d f o r v e s s e l s determined

by parameters

T and

r a t i o o f the major a x i s to the minor

Where

the e l l i p s o i d a l head D

diameter

t

cylinder thickness

T

head t h i c k n e s s

of c y l i n d e r

a s e r i e s of . axis

of

22 For

comparison j] i n t h e p r e s e n t i n v e s t i g a t i o n was t a k -

en as t h e r a t i o o f t h e r a d i u s o f the head.

o f the c y l i n d e r t o

The maximum s t r e s s i n t e n s i t y f a c t o r i n r e f e r -

ence [24] was 3.00 i n the k n u c k l e and 2.15 cap.

the h e i g h t

The parameters were

/] /j = 3

D r£ = 50

i n the s p h e r i c a l T ^ = 1

p r e s e n t i n v e s t i g a t i o n these parameters were

In the

^3=3

^ = 64

T ^

= 1

3.00

and t h e maximum s t r e s s i n t e n s i t y

i n t h e knuckle was

and i n t h e s p h e r i c a l cap 2.28. The

papers d e a l i n g w i t h t h e t o r i s p h e r i c a l

heads

were

p u b l i s h e d by G a l l e t l y [22,23]. One o f these papers [ 2 3 ] , shows t h a t t h e ASME Code f o r Unfired torus.

P r e s s u r e V e s s e l s g i v e s v e r y low s t r e s s v a l u e s i n the The c a l c u l a t i o n s were based on the s o l u t i o n

o f the

d i f f e r e n t i a l equations f o r constant thickness s h e l l s of revolution,

The r e s u l t s show the d i s t r i b u t i o n o f the m e r i d i o n a l

bending s t r e s s e s the

torus,

the

material. The

and the c i r c u m f e r e n t i a l

and t h a t

both s t r e s s e s

direct stresses

in

exceeded the y i e l d p o i n t o f

comparison o f t h e s e r e s u l t s t o the r e s u l t s o b t a i n e d

i n the present i n v e s t i g a t i o n

[Pig.13] a r e made on the

base

o f the s t r e s s i n t e n s i t y f a c t o r . Good agreement p r e v a i l s f o r the maximum s t r e s s i n t e n s i t y f a c t o r , and f o r t h e s i g n o f the stresses. The

dimensions o f t h e head were

23 Radius of s p h e r i c a l cap

227.5

in

Radius o f the c y l i n d e r

138.23

in

T h i c k n e s s o f the head

0.625 i n

T h i c k n e s s o f the c y l i n d e r

0.460 i n

Pressure The

second paper [22]

ure v e s s e l s of influence

t o r i . The

stresses torus

dimensions o f the head were: Radius of the

s p h e r i c a l cap

281.25

in

Radius o f the

cylinder

150

in

T h i c k n e s s o f the head

0.625 i n

T h i c k n e s s of the

0.5

cylinder

s t r e s s due

psig.

to i n t e r n a l p r e s s u r e i n a

by u s i n g

the ASME Code f o r U n f i r e d e q u a t i o n used CT=

Q~=

in

60

a l s o determined i n the

where

use

[Pig.13].

head was

The

the

the

press-

a l s o compared to the v a l u e s p r e s -

Pressure The

examples i n which

stress distribution i n

t h i s was

obtained i n The

two

c o e f f i c i e n t s . I t showed a l s o t h a t h i g h

p r e s e n t e d and

ently

gives

psig.

o f d i f f e r e n t shapes were d e s i g n e d w i t h

o c c u r r e d i n the was

60

presently

investigated vessel

Pressure

Vessels.

was £

[ 0.5

s t r e s s i n the

M f- + 0.1 wall

p = i n t e r n a l pressure

torispherical

]

24 R = inside radius

o f the s p h e r i c a l

cap

t = t h i c k n e s s o f the head 7| = j o i n t e f f i c i e n c y M = 1.77, is The s t r e s s

[unity]

when the r a d i u s

6 % o f the r a d i u s

of

the k n u c k l e

of spherical

cap.

was CT=

28400 p s i

and the s t r e s s i n t e n s i t y f a c t o r was The d i s t r i b u t i o n curve was

1.78.

f l a t t e r f o r the p r e s e n t

v e s t i g a t i o n which was a t t r i b u t e d t o the w a l l t h i c k n e s s the

torus.

inof

25 Summary

The

and

Conclusions.

p h o t o e l a s t i c c o a t i n g method p r o v i d e d

for evaluating pressure

a new approach

the s t r e s s e s i n the t o r i s p h e r i c a l

head o f a

v e s s e l . The coat a p p l i e d t o the s u r f a c e made p o s s i -

b l e the d e t e r m i n a t i o n

o f the s t r a i n s

on the

s t r u c t u r e . I t a l s o supplied the d i r e c t i o n s

surface

o f the

o f the p r i n c i p a l

s t r e s s e s . I n t h i s c a s e they were c i r c u m f e r e n t i a l

and

me-

ridional. The

maximum v a l u e

and the l o c a t i o n

of

t h e s t r e s s e s as

w e l l as t h e i r s i g n was determined and these c l o s e l y w i t h the v a l u e s

obtained

i n other

values

agreed

investigations.The

c i r c u m f e r e n t i a l s t r e s s d i s t r i b u t i o n was lower i n the p r e s e n t i n v e s t i g a t i o n t h a n t h e d i s t r i b u t i o n i n t h e compared T h i s was a t t r i b u t e d t o the t h i c k e r t o r u s i n

the

works. pressure

vessel investigated. The

maximum v a l u e

o f the s t r e s s e s exceeded

point o f the m a t e r i a l , although during

no

yielding

the

yield

was n o t i c e d

the t e s t . I t i s b e l i e v e d that previous

unsuccessful

t e s t i n g caused work h a r d e n i n g i n the m a t e r i a l . The

thickness

o f the p l a s t i c

determined the s e n s i t i v i t y

o f the measurements and i n the p r e s e n t A thicker coating increases

case i t was q u i t e low.

the s e n s i t i v i t y ,

but the r e i n -

f o r c i n g e f f e c t a l s o i n c r e a s e s . The c a s t i n g and f o r m i n g the t h i c k e r sheet i s a l s o more

difficult.

of

When l i q u i d p l a s t i c

i s east,

quite large

quantities

s h o u l d he mixed w i t h the a c c e l e r a t o r to o b t a i n polymerization. tal; non

a little

The

a

amount o f a c c e l e r a t o r added

uniform i s very v i -

d e v i a t i o n from the r e q u i r e d p r o p o r t i o n

causes

u n i f o r m sheet f o r m a t i o n . T h i s , and

f a c e s c o u l d he

the

forming of t h i c k coatings

on c u r v e d

i n v e s t i g a t e d i n a s e p a r a t e work. P h o t o e l a s t i c

measurements on a s h e l l o f r e v o l u t i o n i n which were o b t a i n e d a n a l y t i c a l l y would be a l s o In conclusion

the

stresses

i n s t r u m e n t s used can be

the

to

in

be a

the

v i d e d an e l e c t r i c o u t l e t i s a v a i l a b l e . The equipment and

very

pressure

e a s i l y c a r r i e d and

p h o t o e l a s t i c i n v e s t i g a t i o n i s p o s s i b l e even on the

structure requires l i t t l e

stresses

valuable.

the c a s t i n g method proved

u s e f u l method f o r e v a l u a t i n g v e s s e l . The

sur-

thus

site,pro-

coating

a s h o r t time

of

the

only.

27 References.

1., Mesnager, M., "Sur l a d e t e r m i n a t i o n o p t i q u e des t e n s i o n s i n t e r v e n u e r dans l e s s o l i d e s a t r o i s dimensions"Comptes Rendus l'Aoad. S c i . , 190, 1249, P a r i s , [1930] 2., Mabboux, G., " A p p l i c a t i o n s d e l a P h o t o e l a s t i c i t e dans l e s ouvrages en beton," E d i t o r s : Delmar, Chapon Grounouihou, Prance [1933] 3., Oppel, G., "Das P o l a r i z a t i o n s o p t i s c h e S c h i c h t v e r f a h r e n zur Messung d e r Oberflachenspannung am beanspruchten Baut e i l ohne M o d e l l , " V D I - Z i t s c h r i f t Bd. 81 Nr. 27, [1937] 4., D'Agostino, J . , Drucker, D.C, L i u , O.K. and Mylonas, C, "An a n a l y s i s o f p l a s t i c b e h a v i o u r o f m e t a l s w i t h bonded birefringent plastic," P r o c e e d i n g s o f The S o c i e t y for E x p e r i m e n t a l S t r e s s A n a l y s i s . V o l . X I I . 2, 115-122.[1955] 5., D'Agostino, J . , Drucker, D.C, L i u , O.K. and Mylonas, C, "Epoxy a d h e s i v e s and c a s t i n g resins as Photoelastic plastics" Proceedings o f The S o c i e t y f o r Experimental S t r e s s A n a l y s i s . V o l . X I I . 2, 123-128. [1955] 6., Zandman. P., "Analyse des c o n t r a i n t e s par v e m i s photoelastiques," Groupment 1'Advancement Methodes d'AnalC o n t r a i n t e s V o l . 2, No. 6 1-12 [1956] 7., Zandman, P., "Mesures p h o t o e l a s t i q u e s des deformations e l a s t i q u e s e t p l a s t i q u e s e t des f r a g m e n t a t i o n s c r i s t a l l i nes dans l e s metaux," Revue de M e t a l l u r g i e V o l . L I I . No. 8. 638-642 [1956] 8., Zandman, P.,and Wood, M.R., " P h o t o - S t r e s s a new t e c h n i q u e f o r p h o t o e l a s t i c s t r e s s a n a l y s i s f o r o b s e r v i n g and measuring surface strains on a c t u a l structures and p a r t s " P r o d u c t E n g i n e e r i n g . 167-178 [1956] 9., Zandman, P., " P h o t o e l a s t i c - C o a t i n g t e c h n i q u e f o r determining stress d i s t r i b u t i o n i n welded s t r u c t u r e s , " Welding J o u r n a l Research Supplement [May I960] 10., Frocht.,M.M., P h o t o e l a s t i c i t y . New York. John W i l e y & Sons Inc. [1948] V o l . I . and I I . 11., H e t e n y i , H.,[ed] Handbook o f E x p e r i m e n t a l S t r e s s A n a l y s i s New York. John W i l e y & Sons I n c . [1950]

28 12.,

"INSTRUCTIONS f o r the use o f P h o t o s t r e s s Large Field U n i v e r s a l Meter" T a t n a l l Measuring Systems C o . B u l l e t i n . [ P h o e n i x v i l l e ] No, 8005.[1958]

13.,

M i n d l i n , R.D., " D i s t o r t i o n o f the p h o t o e l a s t i c fringep a t t e r n i n an o p t i c a l l y u n b a l a n c e d polariscope." ASME T r a n s . V o l . 59. No. A 170 [1937]

14.,

Timoshenko, S., G-oodier, J.N., Theory of Elasticity E n g i n e e r i n g S o c i e t i e s Monograph., McGraw-Hill Book Co. I n c . New York. Second ed. [1951]

15.,

McMaster, R.,[ed] N o n d e s t r u c t i v e T e s t i n g Handbook. York. The Ronald P r e s s Co., [1959] V o l I I .

16.,

" O p e r a t i n g i n s t r u c t i o n s f o r t h e Oblique I n c i d e n c e Meter" T a t n a l l Measuring System Co. B u l l e t i n [Phoenixville] No. BN-8003 [1958]

17.,

"Suggestions f o r p l a s t i c s e l e c t i o n . " T a t n a l l Measuring System Co. B u l l e t i n [ P h o e n i x v i l l e ] No. BN-8022 [1959]

18.,

"Instructions f o r Applying Photostress L i q u i d Plastic" T a t n a l l Measuring System Co. B u l l e t i n . [Phoenixville] No. 8005 [1958]

19.,

" I n s t r u c t i o n s f o r moulding c o n t o u r e d s h e e t s o f photostress plastic" T a t n a l l Measuring System C o . B u l l e t i n . No. IB-8008

20.,

" I n s t r u c t i o n s f o r a p p l y i n g p h o t o s t r e s s sheet plastic" T a t n a l l Measuring System Co. B u l l e t i n . [ P h o e n i x v i l l e ] No. IB-8004 [1959]

21.,

Zandman, P., Redner, S.S., and R i e g n e r , E . I . , " R e i n f o r c i n g e f f e c t o f b i r e f r i n g e n t o o a t i n g s ' T r o c e e d i n g s o f The S o c i e t y f o r E x p e r i m e n t a l S t r e s s A n a l y s i s No.588.[1959]

22.,

G a l l e t l y , G.D., " I n f l u e n c e coefficirnts and p r e s s u r e v e s s e l a n a l y s i s , " Journal of Engineering f o r Industry ASME Trans, S e r . B. V o l 82 259-269 [I960]

23.,

G a l l e t l y , G.D., " T o r i s p h e r i c a l s h e l l s - A c a u t i o n signers." Journal of Engineering f o r Industry. T r a n s . Ser. B. V o l . 81. 51-66 [1959]

24.,

K r a u s , H., B i l o d e a u , G.G., Danger, B.F., " S t r e s s e s i n thin-walled pressure vessels with e l l i p s o i d a l heads." Journal of Engineering f o r Industry. ASME T r a n s . S e r . B. V o l . 83. 29-42 [1961]

New

t o deASME

29 Appendix I .

The M a t h e m a t i c a l Theory.

Normal I n c i d e n c e .

The c o n n e c t i o n between t h e p r i n c i p a l refringent material ordinary

and t h e r e t a r d a t i o n o b t a i n e d between the

and e x t r a o r d i n a r y

rays of a polarized

p r e s s e d i n Neumann's law f o r plane

n

G t Rewriting

r

e

'^

xe

P i r

relative

n

c

i

P l

l i g h t i s ex-

stresses.

[ 0 ^ - 0 ^ 2

a

Where

stresses i n a b i -

1.

t

s t r e s s e s i n the p l a s t i c

a

retardation

stress optical

coefficient

thickness

to give

the d i f f e r e n c e o f the p r i n c i p a l

stresses 2.

C 2 t

The d i f f e r e n c e o f the p r i n c i p a l s t r e s s e s c a n a l s o

be

e x p r e s s e d as

[CT-,1

" ^ p " 1 +V. XT

[

1

"€ 2

}

p

3.

30. Where

E = Modulus o f E l a s t i c i t y V = Poissdn's r a t i o ^ 1 ' ^2

=

^

r

i

n

c

i

P l

Strains

a

Combining e q u a t i o n s 2 and 3

5

E

C 2 t

1 + \/ ^

1

c

2 p ;

4

*

or &

[1 + V-]

n

Denoting CE„ 1

e q u a t i o n 4/a becomes

[€ Where

-

x

&

n

2 t K

=

5

K = i s the s t r a i n o p t i c a l c o e f f i c i e n t s u a l l y determined

*

and i s u -

by c a l i b r a t i o n

Assuming a good bond between the p l a s t i c c o a t and s t r u c ture

[E and the d i f f e r e n c e

1

-€ ] 2

p

= [ £

x

o f the p r i n c i p a l

- €

2

]

w

strains

5/a

i n the s t r u c t u r e

31 i s g i v e n by

[Gi -

£

2

K

" 2 t K

6

*

To f i n d t h e d i f f e r e n c e o f the p r i n c i p a l s t r e s s e s Hooke's law i s u s e d

[crl -cr] ^ p l

U

cS

E w

7

n

1 + V

w

2 t K

'*

T h e r e f o r e t h e d e t e r m i n a t i o n o f the r e l a t i v e r e t a r d a t i o n provided

the d i f f e r e n c e o f the

principal

s t r u c t u r e . From t h i s the maximum shear

f

max

stress

is

i n the obtained

2

The i n d i v i d u a l p r i n c i p a l s t r e s s c a n w i t h one normal r e a d i n g

stresses

be o b t a i n e d

however, when t h e p o i n t under i n v e s t i -

gation i s located at a d i s c o n t i n u i t y or free surface. these p o i n t s t h e normal s t r e s s must be zero and gives

also

At

equation

7

the t a n g e n t i a l s t r e s s . Two e q u a t i o n s a r e n e c e s s a r y t o d e f i n e

t h e two i n d i v i d u a l

s t r e s s e s a t p o i n t s n o t on a f r e e s u r f a c e . These two

equa-

t i o n s c a n be o b t a i n e d by t a k i n g two o b l i q u e

o r one

normal

and one o b l i q u e

reading.

readings

32

The

Oblique Incidence.

As

seen from t h e p r e v i o u s d i s c u s s i o n , when the i n c i d e n c e

o f the l i g h t i s normal, o n l y the d i f f e r e n c e o f the p r i n c i p a l s t r e s s e s c a n be o b t a i n e d . lique incidence,

Taking another

reading

under ob-

the r e t a r d a t i o n observed w i l l be the d i f f e r -

ence o f the secondary p r i n c i p a l s t r e s s e s , thus g i v i n g a n o t h e r e q u a t i o n f o r s o l v i n g the two p r i n c i p a l s t r e s s e s i n d i v i d u a l l y .

As

the c o o r d i n a t e

systems show, i t c a n be always a r r a n g -

ed t h a t . o n e o f the p r i n c i p a l s t r e s s e s c o i n c i d e s w i t h one a x i s o f t h e secondary p r i n c i p a l s t r e s s e s . S i n c e the d i r e c t i o n s o f the p r i n c i p a l s t r e s s e s c a n be o b t a i n e d w i t h a dence p o l a r i s c o p e ,

the

oblique

incidence

a l i g n e d w i t h one o f these d i r e c t i o n s , thus

normal

inci-

instrument can including

be

one

p r i n c i p a l s t r e s s i n the d i f f e r e n c e o f the secondary p r i n c i p a l

33 stresses.

S t a r t i n g w i t h Neumann's e q u a t i o n a g a i n and u s i n g

Mohr's c i r c l e

drawn f o r a t h r e e dimension

case we can w r i t e

the e q u a t i o n s f o r the r a t a r d a t i o n t a k i n g two o b l i q u e

inci-

dence measurements

[CT-, - O V ]„ = 1 " 2 p ~ 2 t / cos u

[

where

[S

q1

°~2

" °I

[SO2

and

;

}

ol

5 o2

p ~ 2 t / cos 9

10,

C

2

11,

C

a r e the r e t a r d a t i o n s measured i n

l i q u e i n c i d e n c e the instrument b e i n g a l i g n e d w i t h r e c t i o n o f the p r o p e r p r i n c i p a l s t r e s s .

ob

the d i 0~ '

o

2

be d e f i n e d from Mohr's c i r c l e as shown

[CT '] 2

p

= [CT

2

cos

2 Q

l

]

p

C O

l'>p

=

[G

~1

G

o

s

2

e

2>p

a

n

34 t h e r e f o r e e q u a t i o n 10, and 11 can be expressed i n terms

of

the p r i n c i p a l s t r e s s e s as f o l l o w s

[cr -ar

2

oos

[CTg-C^OOS

S o l v i n g these simultaneous

[CT]

[

C

*

r ] 2

* *

2

2

s

S

9 ] 2

°

p

t

c o s

c

c

o

s

2

0

and

CT"

2

e

14.

2

^

S cos 9 2 t / cos 9, C 2

Ql

C

0

9

+

2

2

g

±

c o s * 9_

15.

]

Great s i m p l i f i c a t i o n can be i n t r o d u c e d by c h o o s i n g angle o f i n c i d e n c e f o r b o t h cases a t 9-^ = 9 which e q u a t i o n s 14 and 15 become reduced

^1 P ;

T T T

-

13.

^02 i C 2 t / cos 9-, C ^ ± 9 cos

^o2 2 t / cos Q 1 - cos

2

O"^

,

Q

o2

°e

1 2

+

1 - cos

=

2

/

equations f o r

^ol 2 t / cos

=

c

i>p = 2 t / co3°i

[

°ol

+

T~>

2

= 45°

the

with

to

1 6

*

35

6\

[ CT ] ~= 3 t C [o&2 '2'p v

0

w

+ ^ ]

Q

17,

Knowing from the normal incidence d e r i v a t i o n that C

K =

1

E. + V /

P

and from this. K [1 + l/^]

C =

E

P

S u b s t i t u t i n g t h i s value of C i n t o equations 16 and 17 assuming that [ £

1

] = C £ p

1

]

w

and

V

=

Prom

and

Hooke's

law \[2

" 2 " °ol "

}

w ,Vg [l + vJ] ~

£ j§*u °oi ~ ~

c

E

K

{

P 9 2 2

«

}

°n

[

S i m i l a r l y the equations determining

the

}

'

2 3

stresses

in

the structure when the oblique reading "includes the p r i n c i p a l stress

are

< ° i > w " t K [1 T v/J ^

^02 " n>

E

frrM [

G^'w

E

w

~ t K [ l + V,]

§

,V2£ {

°o2

determined from the equation

*'

&ns _

~

-

?[

2 5

}

The r e t a r d a t i o n i n the case of normal incidence l i g h t was

2

of

'

where

and

k

i s any p o s i t i v e number [0,1,2,...]

y5

i s the compensator r e a d i n g

/\

i s the wave l e n g t h o f l i g h t used

i n the case o f o b l i q u e

incidence

^ol where

=

~33~

m^ i s the d i f f e r e n c e o f the compensator r e a d i n g s under l o a d and no Equations

18 and 19 a r e expressed

i n t r o d u c i n g the n u m e r i c a l

values

white l i g h t and P o i s s o n ' s

r a t i o as

A=

2.27 x 1 0 "

V/ =

0.3

5

i n a s i m p l e r form by

f o r the wave l e n g t h o f the

in

-7 w 2.36 x l O ' ^

,„

E

« w

[CT ] 2

= 2.36 x I O " 7

W

load

[

J

m

. 2, - f ] m

i

+

- [m

2

+

^]

38 Appendix I I .

Casting p l a s t i c

sheets f o r the head of the v e s s e l .

To c o v e r the head w i t h the p h o t o e l a s t i c p l a s t i c , a t o u r e d sheet had

to he used. The

sheet was

by/ u s i n g a p a r t i a l l y p o l y m e r i z e d p l a s t i c t i a l l y polymerized

sheet was

formed on the head

sheet.

This

from s t i c k i n g

toelastic hardener

baked

inside d i -

put on the g l a s s and s e a l e d w i t h masking

p l a s t i c was

tape

grams o f l i q u i d

mixed w i t h f i f t e e n per c e n t by

phoweight

and a l l o w e d t o r e a c h an exotherm temperature

110° j?. I t was

then poured

to

hardboard

q u a r t e r of an i n c h t h i c k , and 9" x 9"

around i t s e x t e r n a l p e r i m e t e r . Seventy

was

was

t o the g l a s s , a n d was

on the g l a s s i n an oven a t 450°F f o r f o u r h o u r s . A

mensions was

on

the s u r f a c e o f which

p r o t e c t e d by a l a y e r of s i l i c o n e v a r n i s h . T h i s l a y e r

frame, one

par-

o b t a i n e d by c a s t i n g p l a s t i c

an a c c u r a t e l y l e v e l l e d g l a s s p l a t e ,

p r e v e n t the p l a s t i c

con-

onto the prepared g l a s s

of

surface,

where the p o l y m e r i z a t i o n began. A f t e r t h r e e and a h a l f hours a t room temperature t h i c k n e s s , which was

the p l a s t i c

v e r y s o f t . The

the head, c o v e r i n g more than one gence was

formed a sheet of sheet was

then formed

t h i r d of i t .

i n t r o d u c e d w h i l e f o r m i n g . The

uniform

edges

No

birefrin-

of

the

were h e l d i n p o s i t i o n w i t h l i g h t l y a p p l i e d s c o t c h tape, left

f o r c o m p l e t i o n o f the p o l y m e r i z a t i o n which

on

sheet and

required

39 about

24 hours.. When the p o l y m e r i z a t i o n o f the p l a s t i c was

the c o n t o u r e d sheet was ness measured t o one micrometer.

The

completed,

removed from the head and i t s t h i c k -

t e n thousandth

o f an i n c h ,

with

a

edges were c u t and the s u r f a c e c l e a n e d

with

acetone. A reflective tic

used t o bond the p h o t o e l a s -

sheet t o the s u r f a c e o f the head. The

w i t h the hardener, set

type cement was

cement was

t e n p e r c e n t by weight,

f o r t e n minutes or more. A l a y e r o f about

o f an i n c h was

a p p l i e d . A i r bubbles were

a p p l y i n g the sheet a t an a n g l e to the

the o t h e r end. The

one s i x t e e n t h

p r e s s e d out

used

b r a t i o n bar.

by

out w i t h the a i r

edges o f the p l a s t i c were s e a l e d

the r e m a i n i n g cement. The bond hardened i n about

dure was

to

s u r f a c e and g r a d u a l l y

l o w e r i n g so t h a t the excess cement squeezed

the coat: was

allowed

then spread on the head from the mixed cement

and the sheet was

at

and

mixed

a day,

with and

ready f o r the p h o t o e l a s t i c t e s t . T h e same p r o c e to bond the c a l i b r a t i o n s t r i p

to

the

cali-

40 Appendix I I I .

D e t e r m i n a t i o n o f the s t r a i n o p t i c a l c o e f f i c i e n t by c a l i b r a t i o n .

A f t e r the t h i c k n e s s

o f the p l a s t i c c a l i b r a t i o n s t r i p had

been measured the s t r i p was bonded to an aluminum h a r d e n i n g o f the bond took p l a c e

bar.

a t room temperature and com-

p l e t e d i n twenty f o u r h o u r s . B e f o r e

the

calibration

s t a r t e d , the p l a s t i c was examined w i t h a p o l a r i s c o p e was observed t h a t no i n i t i a l b i r e f r i n g e n c e i n g the t e s t bar.

e x i s t e d before load-

One end o f the b a r was then

A f t e r the l a r g e f i e l d p o l a r i s c o p e

f o r the r e a d i n g s ,

clamped

was

to

a

end

positioned

the t e s t b a r was l o a d e d i n two pound i n c r e -

ments and the r e t a r d a t i o n s n o t e d f o r each l o a d .

The

were p l o t t e d i n a compensator r e a d i n g s v e r s u s l o a d system [ P i g . 1 5 ] .

was andl i t

bench and p r o v i s i o n was made t o l o a d i t a t the o t h e r [Pig.14].

The

points

coordinate

Prom the s t r a i g h t l i n e r e l a t i o n s h i p between

l o a d and r e t a r d a t i o n , the l o a d c a u s i n g l e n t t o one wave l e n g t h

a retardation

o f the white l i g h t used

mined. The d i f f e r e n c e o f the p r i n c i p a l s t r a i n s

was

equivadeter-

corresponding

to t h i s r e t a r d a t i o n i s c a l l e d the f r i n g e v a l u e o f the p l a s t i c . T h i s f r i n g e v a l u e i s n o t e q u a l to the a c t u a l s t r a i n d i f f e r e n c e when the s t r u c t u r e i s bent, because o f the r e i n f o r c i n g e f f e c t o f the p l a s t i c

[20], and a c o r r e c t i o n f a c t o r must be a p p l i e d .

41 The mined by t h e o r y of

1= The

cipal

difference

of the

p r i n c i p a l s t r a i n s was

also

deter-

c a l c u l a t i o n , u s i n g the w e l l known e q u a t i o n s from

the

elasticity.

LF t e n s i l e s t r e s s r e s u l t i n g from the

s t r e s s a t the

top

s u r f a c e of the

bar,

l o a d w i l l he the

other

prin-

princi-

pal stress i s zero.

The

difference

er, i s given

by

But

above

As

from the

stated

o~2

=

=

02

= 0

p r i n c i p a l s t r a i n s as d e r i v e d e a r l i -

0

earlier, a correction

c a r e o f the i n t o the

of the

birefringence

equation

z

°i

and

f a c t o r was

n e c e s s a r y to

take

caused by bending. I n t r o d u c i n g t h i s

42

This equation g i v e s the f r i n g e value from the s t r a i n s occurri n g a t the surface of the t e s t

bar. Since the s t r a i n s

the same i n the p l a s t i c as i n the metal

at

the

interface,

t h i s f r i n g e value was made equal t o the f r i n g e value by equation 9 i n Appendix I .

e x p r e s s i n g the s t r a i n

o p t i c a l c o e f f i c i e n t from here

6

K =

2 t y [ l + l / ]

C

2

I n the present case the values were *& = t =

2.27 x 1 0 "

5

0.052

in in

P =

25.5

lb

L =

6.0

in

Z =

1.04 x 1 0 " i n 3

E =

30.0

V=

0.3

C=

1.16

2

x 10

6

3

lb/in

2

are

given

43

and

so

b =

1.0

in

h =

0.25

in

K =

0.0905

with, t h i s v a l u e o f K the f r i n g e v a l u e o f the p l a s t i o f =2400 x 1 0 ~

6

in/in

was

44

1-

Observer

Analyzer plate. Q u a r t e r wave p l a t e

Elliptioally l i g h t beam

Light

source

Polarizer J-^r

wX.

plate

Q u a r t e r wave p l a t e

Circularly polarized l i g h t beam

polarized

i i i i i

Birefringent plajs_tic_ Structure

H

,,

I

~~] x

W-.\\\\\w\\\;x\

.Reflective

-^> W W N ^ W W ^

P i g . 1. Schematic drawing o f R e f l e c t i o n polarisoope

surface

45

0

= Observer

1

= Light

source

Oo = Ooular

p

= Polarizer plate

a

= Analyzer plate

pr = P r i s m

q

= Quartz wedge compensator

w

= Structure

pc = P l a s t i c

P i g . 2 . Schematic

of Oblique Incidence

Polariscope

coat

46

V

Observer

Ooular Analyzer

plate

Quartz wedge compensator

i

Semi t r a n s p a r e n t mirror

Polarizer plate

!

i Objective

I

1

Light source

1

i i

!

]

Plastic Structure

Pig.3.

Schematic o f P o l a r i z i n g Microsoope

coat

47

R

= =

c L = r = t =

R

in in 8.0 in 0.48 i n 0.125 i n

8.0 4.0

Pig.4. The Pressure Vessel

48

F i g . 5 . C a s t i n g of

Plastic

P i g . 6 . P r e s s u r e V e s s e l and

Dead Weight T e s t e r

50

P i g . 7 . T e s t Setup f o r the Large F i e l d

Polariscope

F i g . 8 . T e s t Setup f o r the Oblique Incidence

Polariscope

F i g . 9 . T e s t Setup f o r t h e P o l a r i z i n g M i c r o s c o p e

53

F i g . 1 0 . I s o c l i n i c s on the Head o f the P r e s s u r e

Vessel

Pig.11. S t r e s s

distribution

o f the p r e s s u r e

on the head

vessel

Stress [l0 psi] 5

Spherical

Torus

Cap

40

30

_ Circumferential Stress

20

_

10

_

15

20

25

30

35

40

50

60

80

90 angle c

10 _

20

30

40

50

70

_

P i g . 12.

C i r c u m f e r e n t i a l and Meridional along a r a d i a l l i n e .

Stresses

Stress Intensity, Factor

56 P r e s e n t work Reference [22]

3-1

Reference

[23]

\

30

4 0

50

60

Meridional

70

80

90

angle

Stress

Stress Intensity Factor

P r e s e n t work

3-

30

40

50

60

Circumferential

Fig.13.

7 0 8 0

Referenoe

[22]

Reference

[23]

90

Stress

S t r e s s D i s t r i b u t i o n i n the Torus

angle

Pig.14. T e s t Setup f o r C a l i b r a t i o n o f P l a s t i o

Chủ Đề