Công thức nghiệm của phương trình cos x = cos alpha là

1. Phương trình $\sin x = a$ [1]

* $\left| a \right| > 1$: phương trình [1] vô nghiệm.

* $\left| a \right| \le 1$: gọi $\alpha $ là một cung thỏa mãn $\sin \alpha  = a$. Khi đó phương trình [1] có các nghiệm là:

$x = \alpha  + k2\pi ,k \in Z$

Và $x = \pi  - \alpha  + k2\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $ - \frac{\pi }{2} \le \alpha  \le \frac{\pi }{2}$ và $\sin \alpha  = a$ thì ta viết $\alpha  = \arcsin \alpha $.

Khi đó các nghiệm của phương trình [1] là:

$x = \arcsin \alpha  + k2\pi ,k \in Z$

Và $x = \pi  - \arcsin \alpha  + k2\pi ,k \in Z$.

Phương trình $\sin x = \sin {\beta ^o}$ có các nghiệm là:

$x = {\beta ^o} + k{360^o},k \in Z$

Và $x = {180^o} - {\beta ^o} + k{360^o},k \in Z$.

2. Phương trình $\cos x = a$ [2]

* $\left| a \right| > 1$:  phương trình [2] vô nghiệm.

* $\left| a \right| \le 1$: gọi $\alpha $ là một cung thỏa mãn $\cos \alpha  = a$. Khi đó phương trình [2] có nghiệm là:

$x =  \pm \alpha  + k2\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $0 \le \alpha  \le \pi $ và $\cos \alpha  = a$ thì ta viết $\alpha  = \arccos \alpha $.

Khi đó nghiệm của phương trình [2] là:

$x =  \pm \arcsin \alpha  + k2\pi ,k \in Z$

Phương trình $\cos x = \cos {\beta ^o}$ có nghiệm là:

$x =  \pm {\beta ^o} + k{360^o},k \in Z$

3. Phương trình $\tan x = a$ [3]

Điều kiện của phương trình [3]: $x \ne \frac{\pi }{2} + k\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $ - \frac{\pi }{2} < \alpha  < \frac{\pi }{2}$ và $\tan \alpha  = a$ thì ta viết $\alpha  = \arctan \alpha $.

Lúc đó nghiệm của phương trình [3] là:

$x = \arctan \alpha  + k\pi ,k \in Z$

Phương trình $\tan x = \tan {\beta ^o}$ có nghiệm là:

$x = {\beta ^o} + k{180^o},k \in Z$

4. Phương trình $\cot x = a$ [4]

Điều kiện của phương trình [4]: $x \ne k\pi ,k \in Z$

Nếu  $\alpha $ thỏa mãn điều kiện $0 < \alpha  < \pi $ và $\cot \alpha  = a$ thì ta viết $\alpha  = {\mathop{\rm arccot}\nolimits} \alpha $.

Lúc đó nghiệm của phương trình [4] là:

$x = {\mathop{\rm arc}\nolimits} \cot \alpha  + k\pi ,k \in Z$

Phương trình $\cot x = \cot {\beta ^o}$ có nghiệm là:

$x = {\beta ^o} + k{180^o},k \in Z$

Page 2

SureLRN

Cùng tìm hiểu phương trình lượng giác qua bài viết cùng bài giảng dưới đây nhé!.

Các dạng phương trình lượng giác

Phương trình sinx = m

Nếu \[\left | m \right |\]>1: Phương trình vô nghiệm

Nếu \[\left | m \right |\] \[\leq\] 1 thì chọn 1 góc \[\alpha\] sao cho \[\sin \alpha = m\].

Khi đó nghiệm của phương trình là \[\left\{\begin{matrix} x = \alpha + k2\pi & \\ x = \pi – \alpha +k2\pi & \end{matrix}\right.\] với \[k \epsilon \mathbb{Z}\]

Phương trình cosx = m

Nếu \[\left | m \right |\]>1: Phương trình vô nghiệm

Nếu \[\left | m \right |\] \[\leq\] 1 thì chọn 1 góc \[\alpha\] sao cho \[\cos \alpha = m\] .

Khi đó nghiệm của phương trình là \[\left\{\begin{matrix} x = \alpha + k2\pi & \\ x = – \alpha + k2\pi & \end{matrix}\right.\] với \[k \epsilon \mathbb{Z}\]

Phương trình tanx = m

Chọn góc \[\alpha\] sao cho \[\tan \alpha = m\].

Khi đó phương trình luôn có nghiệm với mọi m.

\[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi [k \epsilon \mathbb{Z}]\]

Hoặc \[\tan x = m \Leftrightarrow m – \arctan m + k\pi\] [m bất kỳ]

Chú ý: \[\tan x = 0 \Leftrightarrow x = k\pi\], \[\tan x\] không xác định khi \[x = \frac{\pi }{2} + k\pi\]

Phương trình cot[x] = m

Chọn góc \[\alpha\] sao cho \[\csc \alpha = m\].

Khi đó phương trình luôn có nghiệm với mọi m.

\[\csc x = \csc \alpha \Leftrightarrow x = \alpha + k\pi [k\epsilon \mathbb{Z}]\] Hoặc \[\cot x = m \Leftrightarrow m = \textrm{arccsc}m + k\pi\] [m bất kỳ]

Chú ý: \[\csc x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi\],

\[\csc x\] không xác định khi \[x = k\pi\]

Vòng tròn lượng giác cho các bạn tham khảo:

Phương trình lượng giác chứa tham số

Phương trình lượng giác chứa tham số dạng \[a\sin x + b \cos x = c\] có nghiệm khi và chỉ khi \[a^{2} + b^{2} \geq c^{2}\]

Để giải phương trình lượng giác chứa tham số có hai cách làm phổ biến là:

  • Thứ nhất đưa về PT lượng giác cơ bản
  • Thứ hai sử dụng phương pháp khảo sát hàm

Phương pháp 1: Đưa về dạng phương trình lượng giác cơ bản

  • Điều kiện có nghiệm của phương trình lượng giác
  • Kết hợp những kiến thức đã học đưa ra các điều kiện làm cho phương trình dạng cơ bản có nghiệm thỏa điều kiện cho trước

Ví dụ: Xác định m để phương trình \[[m^{2} – 3m + 2]\cos ^{2}x = m[m-1]\] [1] có nghiệm.

Cách giải

\[[1]\Leftrightarrow [m-1][m-2]\cos ^{2}x = m [m-1]\] [1’]

Khi m = 1: [1] luôn đúng với mọi \[x\epsilon \mathbb{R}\]

Khi m = 2: [1] vô nghiệm

Khi \[m\neq 1; m\neq 2\] thì:

[1’] \[\Leftrightarrow [m-2]\cos ^{2}x = m \Leftrightarrow \cos ^{2}x = \frac{m}{m-2}\]  [2]

Khi đó [2] có nghiệm \[\Leftrightarrow 0\leq \frac{m}{m-2}\leq 1\Leftrightarrow m\leq 0\]

Vậy [1] có nghiệm khi và chỉ khi m = 1, \[m\leq 0\]

Phương pháp 2: Sử dụng phương pháp khảo sát

Giả sử phương trình lượng giác chứa tham số m có dạng: g[x,m] = 0 [1]. Xác định m để phương trình [1] có nghiệm \[x\epsilon D\]

Phương pháp:

  • Đặt ẩn phụ t = h[x] trong đó h[x] là 1 biểu thức thích hợp trong phương trình [1]
  • Tìm miền giá trị [điều kiện] của t trên tập xác định D. Gọi miền giá trị của t là D1
  • Đưa phương trình [1] về phương trình f[m,t] = 0
  • Tính f’[m, t] và lập bảng biến thiên trên miền D1
  • Căn cứ vào bảng biến thiên và kết quả của bước 4 mà các định giá trị của m.

Trên đây là bài tổng hợp kiến thức về phương trình lượng giác của DINHNGHIA.VN. Nếu có góp ý hay băn khoăn thắc mắc gì các bạn bình luận bên dưới nha.Cảm ơn các bạn! Nếu thấy hay thì chia sẻ nhé ^^

Xem chi tiết qua bài giảng dưới đây nhé:



[Nguồn: www.youtube.com]

Please follow and like us:

Video liên quan

Chủ Đề