Cho tập hợp A=(0;1, 2, 3, 4, 5 có thể lập bao nhiêu số tự nhiên có 5 chữ số khác nhau)

cho M ( -3,1) đường thẳng d có phương trình x+ 2y +1=0. Tìm ảnh của A và d qua phép quay tâm O góc quay -45 độ

cho M ( -3,1) đường thẳng d có phương trình x+ 2y +1=0 tìm ảnh của A và d qua phép quay tâm O góc quay -45độ

Show

07/11/2022 |   0 Trả lời

  • Cho tứ diện ABCD. Gọi I, J lần lượt nằm trên 2 cạnh AC và AD( không là trung điểm) và điểm O nằm trong tam giác BCD. Tìm giao điểm: (OIJ) và (BCD).

    Số tự nhiên thỏa mãn có dạng  với a,b,c,d ∈ A  và đôi một khác nhau.

    TH1: d=0

    Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có  5.4.3 = 60 số.

    TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4

    Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.

    Theo quy tắc nhân có: 2.4.4.3=96 số

    Vậy có tất cả: 96 + 60 = 156 số.

    Chọn C.

    Chẳng hạn như, đề toán có thêm một số phá vỡ bước cuối (chẳng hạn số 6) hoặc yêu cầu các chữ số phải khác nhau thì làm thế nào ạ? Em cảm ơn thầy!

    Chúng ta thử xét bài toán bao gồm cả 2 điều kiện ràng buộc trên như sau:
    Cho $B=\left \{ 0,1,2,3,4,5,6 \right \}$, từ B lập được bao nhiêu số tự nhiên có 5 csố khác nhau và số đó chia hết cho 3.
    Giải ( hy vọng không bị sai...hic..) :
    Trước hết, ta tính số các số có 5 csố khác nhau thỏa yêu cầu (kể cả csố 0 có nghĩa khi đứng bên trái ngoài cùng). Xét đa thức :
    $f(x,y)=(1+x^0y)(1+x^1y)(1+x^2y)(1+x^3y)(1+x^4y)(1+x^5y)(1+x^6y)$
    Hệ số của $y^5$ ( ký hiệu $\left [ y^{5} \right ]$ ) trong khai triển $f(x,y)$ là :
    $ \left [ y^{5} \right ]f\left ( x,y \right )=r\left ( x \right )=x^{20}+x^{19}+2x^{18}+2x^{17}+3x^{16}+3x^{15}+3x^{14}+2x^{13}+2x^{12}+x^{11}+x^{10} $
    Gọi $\omega $ là căn bậc 3 nguyên thủy thì $\omega ^{3}=1$ và :
    $N_{1}=\frac{1}{3}\left ( r\left ( 1 \right )+r\left ( \omega \right ) +r\left ( \omega ^{2} \right )\right )$ . Ta có : $r\left ( 1 \right )=21,r\left ( \omega \right )=r\left ( \omega ^{2} \right )=0\Rightarrow N_{1}=\frac{21}{3}=7\Rightarrow$ số các số là $ S_{1}= 7\cdot5!=840$
    Tiếp đến, ta tính số các số có 4 csố khác nhau và chia hết cho 3 được lập từ $C=B\backslash\left \{ 0 \right \}$. Tương tự như trên, xét đa thức :
    $g(x,y)=(1+x^1y)(1+x^2y)(1+x^3y)(1+x^4y)(1+x^5y)(1+x^6y)$
    Hệ số của $y^4$ trong khai triển $g(x,y)$ là :
    $ \left [ y^{4} \right ]g\left ( x,y \right )=s\left ( x \right )=x^{18}+x^{17}+2x^{16}+2x^{15}+3x^{14}+2x^{13}+2x^{12}+x^{11}+x^{10} $
    Gọi $\omega $ là căn bậc 3 nguyên thủy thì :
    $N_{2}=\frac{1}{3}\left ( s\left ( 1 \right )+s\left ( \omega \right ) +s\left ( \omega ^{2} \right )\right )$ . Ta có : $s\left ( 1 \right )=15, s\left ( \omega \right )=s\left ( \omega ^{2} \right )=0\Rightarrow N_{2}=\frac{15}{3}=5\Rightarrow$ số các số là $
    S_{2}= 5\cdot4!=120$
    Vậy, số các số thỏa yêu cầu đề bài là :
    $S=S_{1}-S_{2}=840-120= \boxed {720}$

    Bài viết đã được chỉnh sửa nội dung bởi Nobodyv3: 20-10-2021 - 08:28

    cho M ( -3,1) đường thẳng d có phương trình x+ 2y +1=0. Tìm ảnh của A và d qua phép quay tâm O góc quay -45 độ

    cho M ( -3,1) đường thẳng d có phương trình x+ 2y +1=0 tìm ảnh của A và d qua phép quay tâm O góc quay -45độ

    07/11/2022 |   0 Trả lời

  • Cho tứ diện ABCD. Gọi I, J lần lượt nằm trên 2 cạnh AC và AD( không là trung điểm) và điểm O nằm trong tam giác BCD. Tìm giao điểm: (OIJ) và (BCD).

    Cho tứ diện ABCD. Gọi I, J lần lượt nằm trên 2 cạnh AC và AD( không là trung điểm) và điểm O nằm trong tam giác BCD. Tìm giao điểm: (OIJ) và (BCD).

    08/11/2022 |   1 Trả lời

  • Giải phương trình: sin2x-√3cos2x=2

    mn giúp e vs ạ

    09/11/2022 |   0 Trả lời

  • Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M,N lần kluowtj là trung điểm của SA,SD. P thuộc SC sao cho SP=2PC. Tìm giao điểm của SB và (MNP)