Đề bài - bài 3.36 trang 160 sbt hình học 11

a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: \(A{\rm{D}}\parallel BC\)và \(AB = BC = C{\rm{D}} = a\), đồng thời \(AC \bot C{\rm{D}},AB \bot B{\rm{D}},AC = B{\rm{D}} = a\sqrt 3 \).

Đề bài

Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SAvuông góc với mặt phẳng đáy (ABCD) với \(SA = a\sqrt 6 \).

a) Tính khoảng cách từ Avà Bđến mặt phẳng (SCD).

b) Tính khoảng cách từ đường thẳng ADđến mặt phẳng (SBC)

Lời giải chi tiết

Đề bài - bài 3.36 trang 160 sbt hình học 11

a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: \(A{\rm{D}}\parallel BC\)và \(AB = BC = C{\rm{D}} = a\), đồng thời \(AC \bot C{\rm{D}},AB \bot B{\rm{D}},AC = B{\rm{D}} = a\sqrt 3 \).

Như vậy

\(\left. \matrix{
C{\rm{D}} \bot AC \hfill \cr
C{\rm{D}} \bot SA \hfill \cr} \right\} \Rightarrow C{\rm{D}} \bot \left( {SAC} \right)\)

Trong mặt phẳng (SAC) dựng AH SC tại Hta có AH CD và AH SC nên AH (SCD)

Vậy AH = d(A,(SCD))

Xét tam giác SACvuông tại Acó AHlà đường cao, ta có:

\(\eqalign{
& {1 \over {A{H^2}}} = {1 \over {S{A^2}}} + {1 \over {A{C^2}}} \cr
& = {1 \over {{{\left( {a\sqrt 6 } \right)}^2}}} + {1 \over {{{\left( {a\sqrt 3 } \right)}^2}}} = {1 \over {2{{\rm{a}}^2}}} \cr} \)

Vậy \(A{H^2} = 2{{\rm{a}}^2} \Rightarrow AH = a\sqrt 2 \)

Gọi I là trung điểm của ADta có \(BI\parallel C{\rm{D}}\)nên BIsong song với mặt phẳng (SCD). Từ đó suy ra \(d\left( {B,\left( {SC{\rm{D}}} \right)} \right) = d\left( {I,\left( {SC{\rm{D}}} \right)} \right)\).

Mặt khác AIcắt (SCD) tại Dnên

\(d\left( {I,\left( {SC{\rm{D}}} \right)} \right) = {1 \over 2}d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = {1 \over 2}.a\sqrt 2 = {{a\sqrt 2 } \over 2}\)

Do đó: \(d\left( {B,\left( {SC{\rm{D}}} \right)} \right) = {{a\sqrt 2 } \over 2}\)

b) Vì \(AD\parallel BC\)nên \(AD\parallel \left( {SBC} \right)\), do đó \(d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)

Dựng \(AD \bot BC\)tại \(E \Rightarrow BC \bot \left( {SA{\rm{E}}} \right)\)

Dựng \(AD \bot SE\)tại Fta có:

\(\left. \matrix{
AF \bot SE \hfill \cr
AF \bot BC\,\left( {vì\,BC \bot \left( {SAE} \right)} \right) \hfill \cr} \right\} \Rightarrow AF \bot \left( {SBC} \right)\)

Vậy \(AF = d\left( {A,\left( {SBC} \right)} \right) = d\left( {AD,\left( {SBC} \right)} \right)\)

Xét tam giác vuông AEB ta có: \(AE = AB\sin \widehat {ABE} = a\sin {60^0} = {{a\sqrt 3 } \over 2}\)

Xét tam giác SAE vuông tại Ata có:

\({1 \over {A{F^2}}} = {1 \over {S{A^2}}} + {1 \over {A{E^2}}} = {1 \over {{{\left( {a\sqrt 6 } \right)}^2}}} + {1 \over {\left( {{{a\sqrt 3 } \over 2}} \right)}} = {9 \over {6{a^2}}}\)

Do đó \(A{F^2} = {{6{a^2}} \over 9} \Rightarrow AF = {{a\sqrt 6 } \over 3}\)

Vậy \(d\left( {AD,\left( {SBC} \right)} \right) = AF = {{a\sqrt 6 } \over 3}\)