LG a - câu 4.9 trang 103 sbt đại số 10 nâng cao

\(\begin{array}{l}\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} = \dfrac{{\sqrt k }}{{\left( {k + 1} \right)k}} = \sqrt k \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right)\\ = \sqrt k \left( {\dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\\ = \left( {1 + \dfrac{{\sqrt k }}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right) < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\end{array}\)
Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • LG b

LG a

Chứng minh rằng, với mọi số nguyên dương k ta đều có

\(\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} = \dfrac{{\sqrt k }}{{\left( {k + 1} \right)k}} = \sqrt k \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right)\\ = \sqrt k \left( {\dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\\ = \left( {1 + \dfrac{{\sqrt k }}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right) < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\end{array}\)

LG b

Áp dụng. Chứng minh rằng

\(\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2.\)

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {1 - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 4 }} + ... + \dfrac{1}{{\sqrt n }} - \dfrac{1}{{\sqrt {n + 1} }}} \right)\\ = 2\left( {1 - \dfrac{1}{{\sqrt {n + 1} }}} \right) < 2\end{array}\)