bottom-up and top-down attention: different processes and overlapping neural systems

  1. Deuschl G (2006) A randomized trial of deep-brain stimulation for Parkinson. N Engl J Med 355:896–908

    CAS  Article  Google Scholar 

  2. Lulic D, Ahmadian A, Baaj AA, Benbadis SR, Vale FL (2009) Vagus nerve stimulation. Neurosurg Focus 27:E5

    Article  Google Scholar 

  3. Loeser JD, Black RG, Christman A (1975) Relief of pain by transcutaneous stimulation. J Neurosurg 42:308–314

    CAS  Article  Google Scholar 

  4. Antal A, Paulus W (2013) Transcranial alternating current stimulation (tACS). Front Hum Neurosci 7:1–4

    Article  Google Scholar 

  5. Stagg CJ et al (2011) Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49:800–804

    CAS  Article  Google Scholar 

  6. Heinen K et al (2016) Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia 87:35–42

    Article  Google Scholar 

  7. Helfrich RF et al (2015) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12:1–15

    Google Scholar 

  8. Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul 8:499–508

    Article  Google Scholar 

  9. Sparing R, Mottaghy FM (2008) Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)—from insights into human memory to therapy of its dysfunction. Methods 44:329–337

    CAS  Article  Google Scholar 

  10. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 325(8437):1106–1107

    Article  Google Scholar 

  11. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488

    Article  Google Scholar 

  12. Chambers CD, Heinen K (2010) TMS and the functional neuroanatomy of attention. Cortex 46:114–117

    Article  Google Scholar 

  13. Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6(1):1–13

    Article  Google Scholar 

  14. Amassian VE et al (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol Potent Sect 74:458–462

    CAS  Article  Google Scholar 

  15. Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol Potent Sect 74:401–416

    CAS  Article  Google Scholar 

  16. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412(1):449–473

    CAS  Article  Google Scholar 

  17. Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M (1994) Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol Potent Sect 93:42–48

    CAS  Article  Google Scholar 

  18. Wassermann EM et al (1996) Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol Mot Control 101:412–417

    CAS  Article  Google Scholar 

  19. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430

    CAS  Article  Google Scholar 

  20. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophys 15(4):333–343

    CAS  Article  Google Scholar 

  21. Cole JC, Green Bernacki C, Helmer A, Pinninti N, O’reardon JP (2015) Efficacy of Transcranial magnetic stimulation (TMS) in the treatment of schizophrenia: a review of the literature to date. Innov Clin Neurosci 12:12–19

    Google Scholar 

  22. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    CAS  Article  Google Scholar 

  23. Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M (1994) Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5(9):1157–1160

  24. Chambers CD, Mattingley JB (2005) Neurodisruption of selective attention: insights and implications. Trends Cogn Sci 9:542–550

    Article  Google Scholar 

  25. Rushworth MFS et al (2002) Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87:2577–2592

    CAS  Article  Google Scholar 

  26. Ogiue-Ikeda M, Kawato S, Ueno S (2003) The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res 993:222–226

    CAS  Article  Google Scholar 

  27. Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54(1): 234–243

  28. Windhoff M, Opitz A, Thielscher A (2013) Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp 34:923–935

    Article  Google Scholar 

  29. Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A (2011) How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58:849–859

    Article  Google Scholar 

  30. Ziemann U et al (1998) Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 511:181–190

    CAS  Article  Google Scholar 

  31. Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45(9):1025–1034

    Article  Google Scholar 

  32. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032

    CAS  Article  Google Scholar 

  33. Muller PA et al (2014) Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS One 9:1–8

    Google Scholar 

  34. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    CAS  Article  Google Scholar 

  35. Smith DT, Jackson SR, Rorden C (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia 43:1288–1296

    Article  Google Scholar 

  36. Meister IG et al (2006) Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience 142:119–123

    CAS  Article  Google Scholar 

  37. Thut G, Pascual-Leone A (2010) Editorial: integrating TMS with EEG: how and what for? Brain Topogr 22:215–218

    Article  Google Scholar 

  38. Silvanto J, Muggleton NG (2008) New light through old windows: moving beyond the ‘virtual lesion’ approach to transcranial magnetic stimulation. Neuroimage 39:549–552

    Article  Google Scholar 

  39. Dugué L, Marque P, VanRullen R (2015) Theta oscillations modulate attentional search performance periodically. J Cogn Neurosci

  40. Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I (1997) Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113(1):24–32

  41. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:215–229

    Article  CAS  Google Scholar 

  42. Ling S, Carrasco M (2006) Sustained and transient covert attention enhance the signal via different contrast response functions. Vis Res 46:1210–1220

    Article  Google Scholar 

  43. Carrasco M (2011) Visual attention: the past 25 years. Vis Res 51:1484–1525

    Article  Google Scholar 

  44. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    CAS  Article  Google Scholar 

  45. Müller HJ, Findlay JM (1987) Sensitivity and criterion effects in the spatial cuing of visual attention. Percept Psychophys 42:383–399

    Article  Google Scholar 

  46. Liu T, Pestilli F, Carrasco M (2005) Transient attention enhances perceptual performance and fMRI response in human visual cortex. Neuron 45:469–477

    CAS  Article  Google Scholar 

  47. Liu T, Fuller S, Carrasco M (2006) Attention alters the appearance of motion coherence. Psychon Bull Rev 13:1091–1096

    Article  Google Scholar 

  48. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565

    CAS  Article  Google Scholar 

  49. Carrasco M, Yeshurun Y (1998) The contribution of covert attention to the set-size and eccentricity effects in visual search. J Exp Psychol Hum Percept Perform 24:673–692

    CAS  Article  Google Scholar 

  50. Yeshurun Y, Carrasco M (2000) The locus of attentional effects in texture segmentation. Nat Neurosci 3:622–627

    CAS  Article  Google Scholar 

  51. Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559

    CAS  Article  Google Scholar 

  52. Chica AB, Martín-Arévalo E, Botta F, Lupiáñez J (2014) The spatial orienting paradigm: how to design and interpret spatial attention experiments. Neurosci Biobehav Rev 40:35–51

    Article  Google Scholar 

  53. Pestilli F, Carrasco M (2005) Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vis Res 45:1867–1875

    Article  Google Scholar 

  54. Luck SJ, Hillyard SA, Mouloua M, Hawkins HL (1996) Mechanisms of visual–spatial attention: resource allocation or uncertainty reduction? J Exp Psychol Hum Percept Perform 22:725–737

    CAS  Article  Google Scholar 

  55. Beck DM, Kastner S (2009) Top-down and bottom-up mechanisms in biasing competition in the human brain. Vis Res 49:1154–1165

    Article  Google Scholar 

  56. Desimone R, Duncan JS (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    CAS  Article  Google Scholar 

  57. Foley JM, Schwarz W (1998) Spatial attention: effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. J Opt Soc Am A 15:1036–1047

    Article  Google Scholar 

  58. Yeshurun Y, Montagna B, Carrasco M (2008) On the flexibility of sustained attention and its effects on a texture segmentation task. Vis Res 48:80–95

    Article  Google Scholar 

  59. Carrasco M, McElree B, Denisova K, Giordano AM (2003) Speed of visual processing increases with eccentricity. Nat Neurosci 6:699–700

    CAS  Article  Google Scholar 

  60. Ivanoff J, Klein RM (2004) Stimulus-response probability and inhibition of return. Psychon Bull Rev 11:542–550

    Article  Google Scholar 

  61. Chica AB, Bartolomeo P, Lupiáñez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123

    Article  Google Scholar 

  62. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185

    CAS  Article  Google Scholar 

  63. Yeshurun Y, Levy L (2003) Transient spatial attention degrades temporal resolution. Psychol Sci 14:225–231

    Article  Google Scholar 

  64. Wolfe JM, Butcher SJ, Lee C, Hyle M (2003) Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform 29:483–502

    Article  Google Scholar 

  65. Connor CE, Egeth HE, Yantis S (2004) Visual attention: bottom-up versus top-down. Curr Biol 14:850–852

    Article  CAS  Google Scholar 

  66. McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    CAS  Article  Google Scholar 

  67. Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    CAS  Article  Google Scholar 

  68. Fielding J, Georgiou-Karistianis N, White O (2006) The role of the basal ganglia in the control of automatic visuospatial attention. J Int Neuropsychol Soc 12:657–667

    Google Scholar 

  69. Mesulam M-M (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    CAS  Article  Google Scholar 

  70. Cohen MR, Maunsell JHR (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600

    CAS  Article  Google Scholar 

  71. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    CAS  Article  Google Scholar 

  72. Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78

    CAS  Article  Google Scholar 

  73. Peelen MV, Heslenfeld DJ, Theeuwes J (2004) Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage 22:822–830

    Article  Google Scholar 

  74. Hahn B, Ross TJ, Stein EA (2006) Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 32:842–853

    Article  Google Scholar 

  75. Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 25:4593–4604

    CAS  Article  Google Scholar 

  76. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315(5820):1860–1862

    CAS  Article  Google Scholar 

  77. Busse L, Katzner S, Treue S (2008) Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proc Natl Acad Sci 105:16380–16385

    CAS  Article  Google Scholar 

  78. Katsuki F, Constantinidis C (2014) Bottom-up and top-down attention. Neuroscience 20:509–521

    Article  Google Scholar 

  79. Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci 98:1273–1276

    CAS  Article  Google Scholar 

  80. Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    CAS  Article  Google Scholar 

  81. Ibos G, Duhamel JR, Hamed SB (2013) A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J Neurosci 33(19):8359–8369

  82. Katsuki F (2012) Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 6:1–13

    Article  Google Scholar 

  83. Grent-’t-Jong T, Woldorff MG (2007) Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol 5:0114–0126

    Article  CAS  Google Scholar 

  84. Katsuki F, Constantinidis C (2012) Early involvement of prefrontal cortex in visual bottom-up attention. Nat Neurosci 15:1160–1166

    CAS  Article  Google Scholar 

  85. Schall JD, Paré M, Woodman GF (2007) Comment on‘Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices’. Science (80-.) 318:44

    CAS  Article  Google Scholar 

  86. Ikkai A, Dandekar S, Curtis CE (2016) Lateralization in Alpha-band oscillations predicts the locus and spatial distribution of attention. PLoS One 11:1–17

    Article  CAS  Google Scholar 

  87. Gould IC, Rushworth MF, Nobre AC (2011) Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol 105:1318–1326

    Article  Google Scholar 

  88. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    CAS  Article  Google Scholar 

  89. Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63

    CAS  Article  Google Scholar 

  90. Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662

    Article  Google Scholar 

  91. Wyart V, Tallon-Baudry C (2008) Neural dissociation between visual awareness and spatial attention. J Neurosci 28:2667–2679

    CAS  Article  Google Scholar 

  92. Landau AN, Esterman M, Robertson LC, Bentin S, Prinzmetal W (2007) Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J Neurosci 27:11986–11990

    CAS  Article  Google Scholar 

  93. Grosbras M-H, Paus T (2003) Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur J Neurosci 18:3121–3126

    Article  Google Scholar 

  94. Grosbras M-H, Paus T (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci 14:1109–1120

    Article  Google Scholar 

  95. Neggers SFW et al (2007) TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements. J Neurophysiol 98:2765–2778

    CAS  Article  Google Scholar 

  96. Turatto M, Sandrini M, Miniussi C (2004) The role of the right dorsolateral prefrontal cortex in visual change awareness. Neuroreport 15:2549–2552

    Article  Google Scholar 

  97. Kalla R, Muggleton NG, Cowey A, Walsh V (2009) Human dorsolateral prefrontal cortex is involved in visual search for conjunctions but not features: a theta TMS study. Cortex 45:1085–1090

    Article  Google Scholar 

  98. Muggleton NG, Juan C-H, Cowey A, Walsh V, O’Breathnach U (2010) Human frontal eye fields and target switching. Cortex 46:178–184

    Article  Google Scholar 

  99. Fuggetta G (2006) Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J Neurophysiol 95:3277–3280

    Article  Google Scholar 

  100. Thut G, Nietzel A, Pascual-Leone A (2005) Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. Cereb Cortex 15:628–638

    Article  Google Scholar 

  101. Beck DM, Muggleton N, Walsh V, Lavie N (2006) Right parietal cortex plays a critical role in change blindness. Cereb Cortex 16:712–717

    Article  Google Scholar 

  102. Ashbridge E, Walsh V, Cowey A (1997) Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia 35:1121–1131

    CAS  Article  Google Scholar 

  103. O’Shea J, Muggleton NG, Cowey A, Walsh V (2004) Timing of target discrimination in human frontal eye fields. J Cogn Neurosci 16:1060–1067

    Article  Google Scholar 

  104. Kalla R, Muggleton NG, Juan C-H, Cowey A, Walsh V (2008) The timing of the involvement of the frontal eye fields and posterior parietal cortex in visual search. NeuroReport 19:1067–1071

    Article  Google Scholar 

  105. Müri R et al (2002) Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Exp Brain Res 143:426–430

    Article  Google Scholar 

  106. Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217–218

    CAS  Article  Google Scholar 

  107. Dambeck N et al (2006) Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res 1072:194–199

    CAS  Article  Google Scholar 

  108. Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4:953–957

    CAS  Article  Google Scholar 

  109. Heinen K et al (2011) Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. Eur J Neurosci 33:991–1000

    Article  Google Scholar 

  110. Capotosto P, Babiloni C, Romani GL, Corbetta M (2012) Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG–rTMS study. Cereb Cortex 22:446–454

    Article  Google Scholar 

  111. Krall SC et al (2016) The right temporoparietal junction in attention and social interaction: a transcranial magnetic stimulation study. Hum Brain Mapp 37:796–807

    Article  Google Scholar 

  112. Bestmann S, Ruff CC, Blakemore C, Driver J, Thilo KV (2007) Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17:134–139

    CAS  Article  Google Scholar 

  113. Silvanto J, Muggleton N, Lavie N, Walsh V (2009) The perceptual and functional consequences of parietal top-down modulation on the visual cortex. Cereb Cortex 19:327–330

    Article  Google Scholar 

  114. Sauseng P, Feldheim JF, Freunberger R, Hummel FC (2011) Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention. Front Psychol 2:1–9

    Article  Google Scholar 

  115. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21(14):1176–1185

    CAS  Article  Google Scholar 

  116. Dugué L, Roberts M, Carrasco M (2016) Attention reorients periodically. Curr Biol 26(12):1595–1601

  117. Marshall TR, O'Shea J, Jensen O, Bergmann TO (2015) Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. J Neurosci 35(4):1638–1647

  118. Herring JD, Thut G, Jensen O, Bergmann TO (2015) Attention modulates TMS-locked alpha oscillations in the visual cortex. J Neurosci 35:14435–14447

    CAS  Article  Google Scholar 

  119. Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21:334–337

    CAS  Article  Google Scholar 

  120. Chanes L, Quentin R, Tallon-Baudry C, Valero-Cabré A, Valero-Cabre A (2013) Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J Neurosci 33:5000–5005

    CAS  Article  Google Scholar 

  121. Romei V, Thut G, Silvanto J (2016) Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39:782–795

    CAS  Article  Google Scholar 

  122. Wagenmakers E-J, Grasman RPPP, Molenaar PCM (2005) On the relation between the mean and the variance of a diffusion model response time distribution. J Math Psychol 49:195–204

    Article  Google Scholar 

  123. Donkin C, Brown S, Heathcote A, Wagenmakers E-J (2011) Diffusion versus linear ballistic accumulation: different models but the same conclusions about psychological processes? Psychon Bull Rev 18:61–69

    Article  Google Scholar 

  124. Forstmann BU, Ratcliff R, Wagenmakers E-J (2016) Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu Rev Psychol 67:641–666

    CAS  Article  Google Scholar 

  125. Sridharan D, Steinmetz NNA, Moore T, Knudsen EI (2014) Distinguishing bias from sensitivity effects in multialternative detection tasks. J Vis 14:16

    Article  Google Scholar 

  126. Eckstein MP, Thomas JP, Palmer J, Shimozaki SS (2000) A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Percept Psychophys 62:425–451

    CAS  Article  Google Scholar 

  127. Sridharan D, Steinmetz NA, Moore T, Knudsen EI (2017) Does the superior colliculus control perceptual sensitivity or choice bias during attention? Evidence from a multialternative decision framework. J Neurosci 37:480–511

    CAS  Article  Google Scholar 

  128. Bergmann TO et al (2009) Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J Neurophysiol 102:2303–2311

    Article  Google Scholar 

  129. Feurra M, Paulus W, Walsh V, Kanai R (2011) Frequency specific modulation of human somatosensory cortex. Front Psychol 2:13

    Article  Google Scholar 

  130. Nowak M, Hinson E, van Ede F, Pogosyan A, Guerra A, Quinn A, Brown P, Stagg CJ (2017) Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study. J Neurosci 37(17):4481–4492

    CAS  Article  Google Scholar 

  131. Katayama T, Rothwell JC (2007) Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clin Neurophysiol 118:2506–2511

    Article  Google Scholar 

  132. Ferreri F, Ponzo D, Hukkanen T, Mervaala E, Könönen M, Pasqualetti P, Vecchio F, Rossini PM, Määttä S (2012) Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study. J Neurophysiol 108(1):314–323

    Article  Google Scholar 

  133. Restuccia D, Ulivelli M, De Capua A, Bartalini S, Rossi S (2007) Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex. Eur J Neurosci 26:2349–2358

    Article  Google Scholar 

  134. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2012) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:323–330

    Google Scholar 

  135. Ortu E, Ruge D, Deriu F, Rothwell JC (2009) Theta burst stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203

    Article  Google Scholar 

  136. Capotosto P, Babiloni C, Romani GL, Corbetta M (2009) Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 29(18):5863–5872

  137. Taylor PCJ, Nobre AC, Rushworth MFS (2007) FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399

    Article  Google Scholar 

  138. Bohning DE et al (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33

  139. Sack AT et al (2002) The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Cogn Brain Res 13:85–93

    CAS  Article  Google Scholar 

  140. Ruff CC et al (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488

    CAS  Article  Google Scholar 

  141. Blankenburg F et al (2010) Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 20:2702–2711

    Article  Google Scholar 

  142. Ruff CC et al (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS–fMRI. Cereb Cortex 18:817–827

    Article  Google Scholar 

  143. Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329

    Article  Google Scholar 

  144. Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W (1998) Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121:371–378

    Article  Google Scholar 

  145. Hotson J, Braun D, Herzberg W, Boman D (1994) Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vis Res 34:2115–2123

    CAS  Article  Google Scholar 

  146. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    Article  Google Scholar 

  147. O’Reardon JP et al (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62:1208–1216

    Article  Google Scholar 

  148. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, Hermiller MS, Voss JL (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345(6200):1054–1057

  149. Harel EV et al (2011) H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World J Biol Psychiatry 12:119–126

    Article  Google Scholar 

  150. Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 12:31001

    Article  Google Scholar 

  151. Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45:1043–1049

    Article  Google Scholar 

  152. Driver J, Blankenburg F, Bestmann S, Ruff CC (2010) New approaches to the study of human brain networks underlying spatial attention and related processes. Exp Brain Res 206:153–162

    Article  Google Scholar 

  153. Weissman JD, Epstein CM, Davey KR (1992) Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clin Neurophysiol Potent Sect 85:215–219

    CAS  Article  Google Scholar 

  154. Tischler H et al (2011) Mini-coil for magnetic stimulation in the behaving primate. J Neurosci Methods 194:242–251

    Article  Google Scholar 

  155. Herrmann CS, Strüber D, Helfrich RF, Engel AK (2016) EEG oscillations: from correlation to causality. Int J Psychophysiol 103:12–21

    Article  Google Scholar 

  156. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscience 12:512–523

    Article  Google Scholar 

  157. Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Ann Rev Neurosci 33:1–21

    CAS  Article  Google Scholar 

  158. Fecteau JH, Bell AH, Munoz DP (2004) Neural correlates of the automatic and goal-driven biases in orienting spatial attention. J Neurophysiol 92(3):1728–1737

  159. Baldauf D, Desimone R (2014) Neural mechanisms of object-based attention. Science 344:424–427

    CAS  Article  Google Scholar 

  160. Schenkluhn B, Ruff CC, Heinen K, Chambers CD (2008) Parietal stimulation decouples spatial and feature-based attention. J Neurosci 28:11106–11110

    CAS  Article  Google Scholar 

  161. Farzan F, Barr MS, Sun Y, Fitzgerald PB, Daskalakis ZJ (2012) Transcranial magnetic stimulation on the modulation of gamma oscillations in schizophrenia. Ann N Y Acad Sci 1265:25–35

    Article  Google Scholar 

  162. Sokhadze EM et al (2009) Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39:619–634

    Article  Google Scholar 

  163. Levkovitz Y, Grisaru N, Segal M (2001) Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology 24:608–616

    CAS  Article  Google Scholar 


Page 2

Attention’s effects on brain and behavior. a (Left) Pop-out (bottom-up) search task. Target differs from distractors in a single salient feature (color singleton); (below) Reaction time (RT) does not increase with number of distractors (set size). (Middle) Conjunction (top-down) search task without cueing. Target differs from distractors based on a conjunction of features (color and shape); (below) RT increases with set size. (Right) Conjunction search task with central (top-down) cue indicating location of target; (below) RT increases marginally with set size. b (Left) Schematic of neuronal firing in visual and attentional areas when the neuron’s receptive field (RF, dashed black oval, upper panel) contains a non-salient stimulus (lower left panel and blue trace) versus a salient stimulus (lower right panel and purple trace). (Middle) Same as in the left panel, but when a top-down cue is used to direct attention to a stimulus within its RF (lower left panel and blue trace) versus outside the RF (lower right panel and purple trace). (Right) Same as in the left panel, but when a distractor is present along with the target in the neuron’s RF. The suppression of activity caused by the distractor (lower left panel and blue trace) can be alleviated by directing attention specifically to the target (lower right panel and purple trace). c (Left) Posner cueing paradigm. Fixation is followed by the appearance of a cue. The cue can be a central or top-down cue (arrowhead, upper panel), a neutral cue (middle panel) or a peripheral or bottom-up cue (transient flash, lower panel). This is followed by the appearance of the stimulus, after a brief delay. Subjects have to detect the presence, identify or localize the target stimulus, which may appear on the cued side (validly cued trials) or not (invalidly cued trials). (Right, upper) Reaction times typically decrease with increasing target strength (e.g., stimulus contrast). The reaction times are highest for invalidly cued trials, intermediate for neutrally cued trials, and least for validly cued trials. (Right, lower) Accuracy (% correct) is typically least for invalidly cued trials, intermediate for neutral cues and highest for validly cued trials. d Important nodes in frontal and parietal cortex involved in attention. Areas in blue are primarily involved in top-down control of attention, but also activate, albeit less strongly, during bottom-up attention. Areas in red are primarily implicated in bottom-up, stimulus-driven reorienting (abbreviations expanded in main text).