Giải bài tập toán 12 trang 112

Bài 2 : Tích phân

Bài 2 trang 112 SGK Giải tích 12:

Tính các tích phân sau:

Giải bài tập toán 12 trang 112

Lời giải:

Kiến thức áp dụng

+ Tích phân từ a đến b của hàm số f(x) có nguyên hàm là F(x) là:

Giải bài tập toán 12 trang 112

+ Một số nguyên hàm sử dụng:

Giải bài tập toán 12 trang 112

Giải bài tập toán 12 trang 112

Giải bài tập toán 12 trang 112

Giải bài tập toán 12 trang 112

Giải bài tập toán 12 trang 112

Giải bài tập toán 12 trang 112

  • Giải Toán 12: Bài 2. Tích phân

Bài 2: Tích phân. Giải bài 1, 2, 3 trang 112, 113 SGK Giải tích 12.  Tính các tích phân sau; Sử dụng phương pháp biến đổi số, tính tích phân:

Bài 1 trang 112 – SGK Giải tích 12: Tính các tích phân sau:

a)\(\int_{\frac{-1}{2}}^{\frac{1}{2}}\sqrt[3]{ (1-x)^{2}}dx\)                    b) \(\int_{0}^{\frac{\pi}{2}}sin(\frac{\pi}{4}-x)dx\)

c)\(\int_{\frac{1}{2}}^{2}\frac{1}{x(x+1)}dx\)                        d) \(\int_{0}^{2}x(x+1)^{2}dx\)

e)\(\int_{\frac{1}{2}}^{2}\frac{1-3x}{(x+1)^{2}}dx\)                        g) \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}sin3xcos5xdx\)

Giải bài tập toán 12 trang 112

a) \(\int_{\frac{-1}{2}}^{\frac{1}{2}}\sqrt[3]{ (1-x)^{2}}dx\) = \(-\int_{\frac{-1}{2}}^{\frac{1}{2}}(1-x)^{\frac{2}{3}}d(1-x)=-\frac{3}{5}(1-x)^{\frac{5}{3}}|_{\frac{-1}{2}}^{\frac{1}{2}}\)

 = \(-\frac{3}{5}\left [ \frac{1}{2\sqrt[3]{4}}-\frac{3\sqrt[3]{9}}{2\sqrt[3]{4}} \right ]=\frac{3}{10\sqrt[3]{4}}(3\sqrt[3]{9}-1)\)

b) \(\int_{0}^{\frac{\pi}{2}}sin(\frac{\pi}{4}-x)dx\)=\(-\int_{0}^{\frac{\pi}{2}}sin(\frac{\pi}{4}-x)d(\frac{\pi}{4}-x)\) = \(cos(\frac{\pi}{4}-x)|_{0}^{\frac{\pi}{2}}\)

= \(cos(\frac{\pi}{4}-\frac{\pi}{2})-cos\frac{\pi}{4}=0\)

c)\(\int_{\frac{1}{2}}^{2}\frac{1}{x(x+1)}dx\)=\(\int_{\frac{1}{2}}^{2}(\frac{1}{x}-\frac{1}{x+1})dx =ln\left | \frac{x}{x+1} \right ||_{\frac{1}{2}}^{2}=ln2\)

d)\(\int_{0}^{2}x(x+1)^{2}dx\)= \(\int_{0}^{2}(x^{3}+2x^{2}+x)dx=(\frac{x^{4}}{4}+\frac{2}{3}x^{3}+\frac{x^{2}}{2})|_{0}^{2}\)

  = \(\frac{16}{4}+\frac{16}{3}+2= 11\tfrac{1}{3}\)

e)\(\int_{\frac{1}{2}}^{2}\frac{1-3x}{(x+1)^{2}}dx\)= \(\int_{\frac{1}{2}}^{2}\frac{-3(x+1)+4}{(x+1)^{2}}dx=\int_{\frac{1}{2}}^{2}\left [ \frac{-3}{x+1}+\frac{4}{(x+1)^{2}} \right ]dx\)

= \(\left ( -3.ln\left | x+1 \right |-\frac{4}{x+1} \right )|_{\frac{1}{2}}^{2}= \frac{4}{3}-3ln2\)

g)Ta có \(f(x) = sin3xcos5x\) là hàm số lẻ.

Vì \(f(-x) = sin(-3x)cos(-5x)\)

                 \(= -sin3xcos5x = -f(x)\)

nên:

         \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}sin3xcos5x =0\)

Chú ý: Có thể tính trực tiếp bằng cách đặt \(x= -t\) hoặc biến đổi thành tổng.

Bài 2: Tính các tích phân sau:

a) \(\int_0^2 {\left| {1 – x} \right|} dx\)                               b) \(\int_0^{{\pi  \over 2}} s i{n^2}xdx\)

c) \(\int_0^{ln2} {{{{e^{2x + 1}} + 1} \over {{e^x}}}} dx\)                            d) \(\int_0^\pi  s in2xco{s^2}xdx\)

Giải bài tập toán 12 trang 112

a) Ta có \(1 – x = 0 ⇔ x = 1\).

\(\int_0^2 {\left| {1 – x} \right|} dx = \int_0^1 {\left| {1 – x} \right|} dx + \int_1^2 {\left| {1 – x} \right|} dx\)

\(=  – \int_0^1 {(1 – x)} d(1 – x) + \int_1^2 {(x – 1)} d(x – 1)\)

\( =  – {{{{(1 – x)}^2}} \over 2}|_0^1 + {{{{(x – 1)}^2}} \over 2}|_1^2 = {1 \over 2} + {1 \over 2} = 1\)

b) \(\int_0^{{\pi  \over 2}} s i{n^2}xdx\)

\( = {1 \over 2}\int_0^{{\pi  \over 2}} {(1 – cos2x)} dx\)

\( = {1 \over 2}\left( {x – {1 \over 2}sin2x} \right)|_0^{{\pi  \over 2}} = {\pi  \over 4}\)

c) \(\int_0^{ln2} {{{{e^{2x + 1}} + 1} \over {{e^x}}}} dx = \int_0^{ln2} {({e^{x + 1}} + {e^{ – x}})} dx\)

\( = ({e^{x + 1}} – {e^{ – x}})|_0^{ln2} = e + {1 \over 2}\)

d) Ta có : \(sin2xcos^2x\) = \({1 \over 2}sin2x(1 + cos2x) = {1 \over 2}sin2x + {1 \over 4}sin4x\)

Do đó : \(\eqalign{ & \int_0^\pi s in2xco{s^2}xdx = \int_0^\pi {({1 \over 2}sin2x + {1 \over 4}sin4x)} dx \cr & = ( – {1 \over 4}cos2x – {1 \over {16}}cos4x)|_0^\pi \cr

& = – {1 \over 4} – {1 \over {16}} + {1 \over 4} + {1 \over {16}} = 0 \cr} \).

Bài 3: Sử dụng phương pháp biến đổi số, tính tích phân:

a) \(\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx\)      (Đặt \(u= x+1\))

b) \(\int_{0}^{1}\sqrt{1-x^{2}}dx\)       (Đặt \(x = sint\) )

c) \(\int_{0}^{1}\frac{e^{x}(1+x)}{1+x.e^{x}}dx\)    (Đặt \(u = 1 + x.{e^x}\))

d)\(\int_{0}^{\frac{a}{2}}\frac{1}{\sqrt{a^{2}-x^{2}}}dx\)    (Đặt \(x= asint\))

Giải bài tập toán 12 trang 112

a) Đặt \(u= x+1 \Rightarrow  du =  dx\) và \(x = u – 1\).

Khi \(x =0\) thì \(u = 1, x = 3\) thì \(u = 4\). Khi đó :

\(\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx\) = \(\int_{1}^{4}\frac{(u-1)^{2}}{u^{\frac{3}{2}}}du =\int_{1}^{4}\frac{u^{2}-2u+1}{u^{\frac{3}{2}}}du\)

= \((\frac{2}{3}u^{\frac{3}{2}}-4.u^{\frac{1}{2}}-2u^{\frac{-1}{2}})|_{1}^{4}=\frac{5}{3}\)

b) Đặt \(x = sint\), \(0

và \(\sqrt{1-x^{2}}=\sqrt{1-sin^{2}t}= \sqrt{cos^{2}t}=\left | cost \right |= cos t.\)

Khi \(x = 0\) thì \(t = 0\), khi \(x = 1\) thì  \(t= \frac{\pi}{2}\) . Khi đó:

\(\int_{0}^{1}\sqrt{1-x^{2}}dx = \int_{0}^{\frac{\pi}{2}}cos^{2}tdt= \frac{1}{2}\int_{0}^{\frac{\pi}{2}}(1+cos2t)dt\)

\(=\frac{1}{2}(t+\frac{1}{2}sin 2t)|_{0}^{\frac{\pi}{2}}=\frac{1}{2}(\frac{\pi}{2}-0)= \frac{\pi}{4}\)

c) Đặt: \(t = 1 + x{e^x} \Rightarrow dt = {e^x}(1 + x)dx\)

Khi \(x = 0 \Rightarrow t = 1\)

Khi \(x = 1 \Rightarrow t = 1 + e\)

Do đó ta có:

\(\int\limits_0^1 {{{{e^x}(1 + x)} \over {1 + x{e^x}}}dx = \int\limits_1^{1 + e} {{{dt} \over t} = {\rm{[}}\ln |t|{\rm{]}}} } \left| {_1^{1 + e} = \ln (1 + e)} \right.\).

d) Đặt \(x = a\sin t \Rightarrow dx = a\cos tdt\)

Đổi cận:

\(\eqalign{ & x = 0 \Rightarrow t = 0 \cr

& x = {a \over 2} \Rightarrow t = {\pi \over 6} \cr} \)

Do đó ta có:

\(\int\limits_0^{{a \over 2}} {{1 \over {\sqrt {{a^2} – {x^2}} }}dx = \int\limits_0^{{\pi  \over 6}} {{{a\cos tdt} \over {\sqrt {{a^2} – {a^2}{{\sin }^2}t} }} = \int\limits_0^{{\pi  \over 6}} {dt = t\left| {_0^{{\pi  \over 6}} = {\pi  \over 6}} \right.} } } \).