Đề bài - bài 51 trang 87 sgk toán 9 tập 2

\(\begin{array}{l}\widehat {BIC} = 180^\circ - \widehat {IBC} - \widehat {ICB} = 180^\circ - \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\\ = 180^\circ - \dfrac{{\widehat B + \widehat C}}{2} = 180^\circ - 60^\circ = 120^\circ \end{array}\)

Đề bài

Cho \(I, \, O\) lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác \(ABC\) với\(\widehat{A} = 60^0.\) Gọi \(H\) là giao điểm của các đường cao \(BB'\) và \(CC'.\)

Chứng minh các điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Với đoạn thẳng \(AB\) và góc \(\alpha\, \, (0^0 < \alpha < 180^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{AMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(AB.\)

Nên ta chỉ ra\(\widehat{BOC}=\widehat{BHC}=\widehat{BIC}\).

Lời giải chi tiết

Đề bài - bài 51 trang 87 sgk toán 9 tập 2

+) Ta có:\(\widehat{BOC} = 2\widehat{BAC} = 2.60^0= 120^0\) (góc nội tiếp và góc ở tâm cùng chắn một cung \(BC\)). (1)

+) Lại có \(\widehat{BHC} = \widehat{B'HC'}\)(hai góc đối đỉnh)

Mà\(\widehat{B'HC'} = 360^\circ - \widehat {HC'A} - \widehat {HB'A} - \widehat A\) \( = 360^\circ - 90^\circ - 90^\circ - 60^\circ = 120^\circ\)

\(\Rightarrow \widehat{BHC} = 120^0.\) (2)

+) Vì I là tâm đường tròn nội tiếp tam giác ABC nên BI; CI lần lượt là tia phân giác góc B, góc C.

Xét tam giác \(ABC\) có \(\widehat B + \widehat C + \widehat A = 180^\circ \Leftrightarrow \widehat B + \widehat C = 180^\circ - 60^\circ = 120^\circ \)

Xét tam giác BIC theo định lý về tổng 3 góc trong một tam giác ta có

\(\begin{array}{l}\widehat {BIC} = 180^\circ - \widehat {IBC} - \widehat {ICB} = 180^\circ - \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\\ = 180^\circ - \dfrac{{\widehat B + \widehat C}}{2} = 180^\circ - 60^\circ = 120^\circ \end{array}\)

Do đó\(\widehat{BIC} = 120^0.\) (3)

Từ (1), (2), (3) ta thấy các điểm \(O, \, H, \, I\) cùng nằm trên các cung chứa góc \(120^0\)dựng trên đoạn thẳng \(BC.\) Nói cách khác, năm điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn.