For what is phenytoin in seizure?
What is Dilantin and how is it used?Dilantin is a prescription medicine used to treat the symptoms of seizures as a anticonvulsant. Dilantin may be used alone or with other medications. Show
Dilantin belongs to a class of drugs called Anticonvulsants, Hydantoins; Antidysrhythmics, Ib. It is not known if Dilantin is safe and effective in children younger than 6 months of age. What are the possible side effects of Dilantin?Dilantin may cause serious side effects including:
Get medical help right away, if you have any of the symptoms listed above. The most common side effects of Dilantin include:
Tell the doctor if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of Dilantin. For more information, ask your doctor or pharmacist. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. WARNING CARDIOVASCULAR RISK ASSOCIATED WITH RAPID INFUSION The rate of intravenous DILANTIN administration should not exceed 50 mg per minute in adults and 1 to 3 mg/kg/min (or 50 mg per minute, whichever is slower) in pediatric patients because of the risk of severe hypotension and cardiac arrhythmias. Careful cardiac monitoring is needed during and after administering intravenous DILANTIN. Although the risk of cardiovascular toxicity increases with infusion rates above the recommended infusion rate, these events have also been reported at or below the recommended infusion rate. Reduction in rate of administration or discontinuation of dosing may be needed [see DOSAGE AND ADMINISTRATION and WARNINGS AND PRECAUTIONS]. DESCRIPTIONDILANTIN (phenytoin sodium) injection, USP is a sterile solution of 50 mg phenytoin sodium per milliliter for intravenous or intramuscular administration. The solution is in a vehicle containing 40% propylene glycol and 10% alcohol in water for injection, adjusted to pH 12 with sodium hydroxide. Phenytoin sodium is related to the barbiturates in chemical structure, but has a five-membered ring. The chemical name is sodium 5,5-diphenyl-2, 4- imidazolidinedione represented by the following structural formula: 3 pharmacies near 10036 have coupons for Dilantin (Brand Names:Dilantin for 50MG)INDICATIONSDILANTIN is indicated for the treatment of tonic-clonic (grand mal) and psychomotor (temporal lobe) seizures and prevention and treatment of seizures occurring during or following neurosurgery. DOSAGE AND ADMINISTRATIONAdult DosageDivided Daily DosageThe recommended starting dose for adult patients who have received no previous treatment is one 100-mg DILANTIN (extended phenytoin sodium capsule, USP) by mouth three times daily. Adjust the dosage to suit individual requirements up to a maximum of two capsules three times a day. For most adults, the satisfactory maintenance dosage will be one capsule three to four times a day. Once-A-Day DosageIn adults, if seizure control is established with divided doses of three 100-mg DILANTIN (extended phenytoin sodium capsules, USP) daily, once-a-day dosage with 300 mg of DILANTIN (extended phenytoin sodium capsules, USP) may be considered. Studies comparing divided doses of 300 mg with a single daily dose of this quantity indicated absorption, peak serum levels, biologic halflife, difference between peak and minimum values, and urinary recovery were equivalent. Once-a-day dosage offers a convenience to the individual patient or to nursing personnel for institutionalized patients and is intended to be used only for patients requiring this amount of drug daily. A major problem in motivating noncompliant patients may also be lessened when the patient can take this drug once a day. However, patients should be cautioned not to miss a dose, inadvertently. Only DILANTIN (extended phenytoin sodium capsules, USP) are recommended for once-a-day dosing. Inherent differences in dissolution characteristics and resultant absorption rates of phenytoin due to different manufacturing procedures and/or dosage forms preclude such recommendation for other phenytoin products. When a change in the dosage form or brand is prescribed, careful monitoring of phenytoin serum levels should be carried out. Loading DoseSome authorities have advocated use of an oral loading dose of phenytoin in adults who require rapid steady-state serum levels and where intravenous administration is not desirable. This dosing regimen should be reserved for patients in a clinic or hospital setting where phenytoin serum levels can be closely monitored. Patients with a history of renal or liver disease should not receive the oral loading regimen. Initially, one gram of DILANTIN (extended phenytoin sodium capsules, USP) is divided into three doses (400 mg, 300 mg, 300 mg) and administered at two-hour intervals. Normal maintenance dosage is then instituted 24 hours after the loading dose, with frequent serum level determinations. Pediatric DosageThe recommended starting dosage for pediatric patients is 5 mg/kg/day by mouth in two or three equally divided doses, with subsequent dosage individualized to a maximum of 300 mg daily in divided doses. A recommended daily maintenance dosage is usually 4 to 8 mg/kg/day in equally divided doses. Children over 6 years and adolescents may require the minimum adult dosage (300 mg/day). Dosage AdjustmentsDosage should be individualized to provide maximum benefit. In some cases, serum blood level determinations may be necessary for optimal dosage adjustments. Trough levels provide information about clinically effective serum level range and confirm patient compliance, and are obtained just prior to the patient's next scheduled dose. Peak levels indicate an individual's threshold for emergence of dose-related side effects and are obtained at the time of expected peak concentration. Therapeutic effect without clinical signs of toxicity occurs more often with serum total concentrations between 10 and 20 mcg/mL (unbound phenytoin concentrations between 1 and 2 mcg/mL), although some mild cases of tonic-clonic (grand mal) epilepsy may be controlled with lower serum levels of phenytoin. In patients with renal or hepatic disease, or in those with hypoalbuminemia, the monitoring of unbound phenytoin concentrations may be more relevant [see Dosing In Patients With Renal Or Hepatic Impairment Or Hypoalbuminemia]. With recommended dosage, a period of seven to ten days may be required to achieve steady-state blood levels with phenytoin and changes in dosage (increase or decrease) should not be carried out at intervals shorter than seven to ten days. Switching Between Phenytoin FormulationsThe free acid form of phenytoin is used in DILANTIN-125 Suspension and DILANTIN Infatabs. DILANTIN extended capsules and parenteral DILANTIN are formulated with the sodium salt of phenytoin. Because there is approximately an 8% increase in drug content with the free acid form over that of the sodium salt, dosage adjustments and serum level monitoring may be necessary when switching from a product formulated with the free acid to a product formulated with the sodium salt and vice versa. Dosing In Patients With Renal Or Hepatic Impairment Or HypoalbuminemiaBecause the fraction of unbound phenytoin is increased in patients with renal or hepatic disease, or in those with hypoalbuminemia, the monitoring of phenytoin serum levels should be based on the unbound fraction in those patients [see WARNINGS AND PRECAUTIONS and Use In Specific Populations]. Geriatric DosagePhenytoin clearance is decreased slightly in elderly patients and lower or less frequent dosing may be required [see CLINICAL PHARMACOLOGY]. Dosing During PregnancyDecreased serum concentrations of phenytoin may occur during pregnancy because of altered phenytoin pharmacokinetics. Periodic measurement of serum phenytoin concentrations should be performed during pregnancy, and the DILANTIN dosage should be adjusted as necessary. Postpartum restoration of the original dosage will probably be indicated [see Use In Specific Populations]. Because of potential changes in protein binding during pregnancy, the monitoring of phenytoin serum levels should be based on the unbound fraction. HOW SUPPLIEDDosage Forms And StrengthsDILANTIN extended phenytoin sodium capsules are available as:
DILANTIN (extended phenytoin sodium capsules, USP) is supplied as follows:
DILANTIN 30 mg extended capsules are available as a size 4 hemispherical Coni-Snap capsule with a white opaque body and pale pink opaque cap containing a white powder. Capsule is imprinted with black rectified radial print, "PD" on cap and "DILANTIN 30 mg" on body. DILANTIN 100 mg extended capsules are available as hard, filled No. 3 capsules containing a white powder. The medium orange cap having "PD" printed in black ink and the white, opaque body having "DILANTIN" over "100 mg" printed in black ink. Storage And HandlingStore at 20 to 25°C (68 to 77°F) [See USP Controlled Room Temperature]. Preserve in tight, light-resistant containers. Protect from moisture. This Medication Guide has been approved by the U.S. Food and Drug Administration Revised: Dec 2018 SLIDESHOWWhat Is Epilepsy? Symptoms, Causes, and Treatments See SlideshowSIDE EFFECTSThe following serious adverse reactions are described elsewhere in the labeling:
The following adverse reactions associated with the use of DILANTIN were identified in clinical studies or postmarketing reports. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Body as a Whole: Allergic reactions in the form of rash and rarely more serious forms and DRESS have been observed, as has angioedema [see WARNINGS AND PRECAUTIONS]. Anaphylaxis has also been reported. There have also been reports of coarsening of facial features, systemic lupus erythematosus, periarteritis nodosa, and immunoglobulin abnormalities. Digestive System: Acute hepatic failure, toxic hepatitis, liver damage, nausea, vomiting, constipation, enlargement of the lips, and gingival hyperplasia. Hematologic and Lymphatic System: Hematopoietic complications, some fatal, have occasionally been reported in association with administration of phenytoin. These have included thrombocytopenia, leukopenia, granulocytopenia, agranulocytosis, and pancytopenia with or without bone marrow suppression. While macrocytosis and megaloblastic anemia have occurred, these conditions usually respond to folic acid therapy. Lymphadenopathy including benign lymph node hyperplasia, pseudolymphoma, lymphoma, and Hodgkin's disease have been reported [see WARNINGS AND PRECAUTIONS]. Laboratory Test Abnormality: Phenytoin may decrease serum concentrations of thyroid hormone (T4 and T3), sometimes with an accompanying increase in thyroid-stimulating hormone (TSH), but usually in the absence of clinical hypothyroidism. Phenytoin may also produce lower than normal values for dexamethasone or metyrapone tests. Phenytoin may cause increased serum levels of glucose [see WARNINGS AND PRECAUTIONS], alkaline phosphatase, and gamma glutamyl transpeptidase (GGT). Nervous System: The most common adverse reactions encountered with phenytoin therapy are nervous system reactions and are usually dose-related. Reactions include nystagmus, ataxia, slurred speech, decreased coordination, somnolence, and mental confusion. Dizziness, vertigo, insomnia, transient nervousness, motor twitchings, paresthesias, and headaches have also been observed. There have also been rare reports of phenytoin-induced dyskinesias, including chorea, dystonia, tremor and asterixis, similar to those induced by phenothiazine and other neuroleptic drugs. Cerebellar atrophy has been reported, and appears more likely in settings of elevated phenytoin levels and/or long-term phenytoin use [see WARNINGS AND PRECAUTIONS]. A predominantly sensory peripheral polyneuropathy has been observed in patients receiving long-term phenytoin therapy. Skin and Appendages: Dermatological manifestations sometimes accompanied by fever have included scarlatiniform or morbilliform rashes. A morbilliform rash (measles-like) is the most common; other types of dermatitis are seen more rarely. Other more serious forms which may be fatal have included bullous, exfoliative or purpuric dermatitis, acute generalized exanthematous pustulosis, Stevens-Johnson syndrome, and toxic epidermal necrolysis [see WARNINGS AND PRECAUTIONS]. There have also been reports of hypertrichosis and urticaria. Special Senses: Altered taste sensation including metallic taste. Urogenital: Peyronie's disease DRUG INTERACTIONSPhenytoin is extensively bound to plasma proteins and is prone to competitive displacement. Phenytoin is metabolized by hepatic cytochrome P450 enzymes CYP2C9 and CYP2C19, and is particularly susceptible to inhibitory drug interactions because it is subject to saturable metabolism. Inhibition of metabolism may produce significant increases in circulating phenytoin concentrations and enhance the risk of drug toxicity. Monitoring of phenytoin serum levels is recommended when a drug interaction is suspected. Phenytoin is a potent inducer of hepatic drug-metabolizing enzymes. Drugs That Affect Phenytoin ConcentrationsTable 2 includes commonly occurring drug interactions that affect phenytoin concentrations. However, this list is not intended to be inclusive or comprehensive. Individual prescribing information from relevant drugs should be consulted. The addition or withdrawal of these agents in patients on phenytoin therapy may require an adjustment of the phenytoin dose to achieve optimal clinical outcome. Table 2: Drugs That Affect Phenytoin Concentrations
Drugs Affected By PhenytoinTable 3 includes commonly occurring drug interactions affected by phenytoin. However, this list is not intended to be inclusive or comprehensive. Individual drug package inserts should be consulted. The addition or withdrawal of phenytoin during concomitant therapy with these agents may require adjustment of the dose of these agents to achieve optimal clinical outcome. Table 3: Drugs Affected by Phenytoin
Drug Enteral Feeding/Nutritional Preparations InteractionLiterature reports suggest that patients who have received enteral feeding preparations and/or related nutritional supplements have lower than expected phenytoin serum levels. It is therefore suggested that phenytoin not be administered concomitantly with an enteral feeding preparation. More frequent serum phenytoin level monitoring may be necessary in these patients. Drug/Laboratory Test InteractionsCare should be taken when using immunoanalytical methods to measure serum phenytoin concentrations. WARNINGSIncluded as part of the "PRECAUTIONS" Section PRECAUTIONSWithdrawal Precipitated Seizure, Status EpilepticusAbrupt withdrawal of phenytoin in epileptic patients may precipitate status epilepticus. When, in the judgment of the clinician, the need for dosage reduction, discontinuation, or substitution of alternative anticonvulsant medication arises, this should be done gradually. However, in the event of an allergic or hypersensitivity reaction, more rapid substitution of alternative therapy may be necessary. In this case, alternative therapy should be an anticonvulsant drug not belonging to the hydantoin chemical class. Suicidal Behavior And IdeationAntiepileptic drugs (AEDs), including DILANTIN, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 1 shows absolute and relative risk by indication for all evaluated AEDs. Table 1 Risk by indication for antiepileptic drugs in the pooled analysis
The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing DILANTIN or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. Serious Dermatologic ReactionsDILANTIN can cause severe cutaneous adverse reactions (SCARs), which may be fatal. Reported reactions in phenytoin-treated patients have included toxic epidermal necrolysis (TEN), Stevens-Johnson syndrome (SJS), acute generalized exanthematous pustulosis (AGEP), and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) [see Drug Reaction With Eosinophilia And Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity]. The onset of symptoms is usually within 28 days, but can occur later. DILANTIN should be discontinued at the first sign of a rash, unless the rash is clearly not drug-related. If signs or symptoms suggest a severe cutaneous adverse reaction, use of this drug should not be resumed and alternative therapy should be considered. If a rash occurs, the patient should be evaluated for signs and symptoms of SCARs. Studies in patients of Chinese ancestry have found a strong association between the risk of developing SJS/TEN and the presence of HLA-B*1502, an inherited allelic variant of the HLA B gene, in patients using carbamazepine. Limited evidence suggests that HLAB* 1502 may be a risk factor for the development of SJS/TEN in patients of Asian ancestry taking other antiepileptic drugs associated with SJS/TEN, including phenytoin. Consideration should be given to avoiding phenytoin as an alternative for carbamazepine in patients positive for HLA-B*1502. The use of HLA-B*1502 genotyping has important limitations and must never substitute for appropriate clinical vigilance and patient management. The role of other possible factors in the development of, and morbidity from, SJS/TEN, such as antiepileptic drug (AED) dose, compliance, concomitant medications, comorbidities, and the level of dermatologic monitoring have not been studied. Drug Reaction With Eosinophilia And Systemic Symptoms (DRESS)/Multiorgan HypersensitivityDrug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as Multiorgan hypersensitivity, has been reported in patients taking antiepileptic drugs, including DILANTIN. Some of these events have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, lymphadenopathy, and/or facial swelling, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. Because this disorder is variable in its expression, other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. DILANTIN should be discontinued if an alternative etiology for the signs or symptoms cannot be established. HypersensitivityDILANTIN and other hydantoins are contraindicated in patients who have experienced phenytoin hypersensitivity [see CONTRAINDICATIONS and Angioedema]. Additionally, consider alternatives to structurally similar drugs such as carboxamides (e.g., carbamazepine), barbiturates, succinimides, and oxazolidinediones (e.g., trimethadione) in these same patients. Similarly, if there is a history of hypersensitivity reactions to these structurally similar drugs in the patient or immediate family members, consider alternatives to DILANTIN. Cardiac EffectsCases of bradycardia and cardiac arrest have been reported in DILANTIN-treated patients, both at recommended phenytoin doses and levels, and in association with phenytoin toxicity [see OVERDOSE]. Most of the reports of cardiac arrest occurred in patients with underlying cardiac disease. AngioedemaAngioedema has been reported in patients treated with DILANTIN in the postmarketing setting. DILANTIN should be discontinued immediately if symptoms of angioedema, such as facial, perioral, or upper airway swelling occur. DILANTIN should be discontinued permanently if a clear alternative etiology for the reaction cannot be established. Hepatic InjuryCases of acute hepatotoxicity, including infrequent cases of acute hepatic failure, have been reported with DILANTIN. These events may be part of the spectrum of DRESS or may occur in isolation [see Drug Reaction With Eosinophilia And Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity]. Other common manifestations include jaundice, hepatomegaly, elevated serum transaminase levels, leukocytosis, and eosinophilia. The clinical course of acute phenytoin hepatotoxicity ranges from prompt recovery to fatal outcomes. In these patients with acute hepatotoxicity, DILANTIN should be immediately discontinued and not readministered. Hematopoietic ComplicationsHematopoietic complications, some fatal, have occasionally been reported in association with administration of DILANTIN. These have included thrombocytopenia, leukopenia, granulocytopenia, agranulocytosis, and pancytopenia with or without bone marrow suppression. There have been a number of reports suggesting a relationship between phenytoin and the development of lymphadenopathy (local or generalized) including benign lymph node hyperplasia, pseudolymphoma, lymphoma, and Hodgkin's disease. Although a cause and effect relationship has not been established, the occurrence of lymphadenopathy indicates the need to differentiate such a condition from other types of lymph node pathology. Lymph node involvement may occur with or without symptoms and signs of DRESS [see Drug Reaction With Eosinophilia And Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity]. In all cases of lymphadenopathy, follow-up observation for an extended period is indicated and every effort should be made to achieve seizure control using alternative antiepileptic drugs. Effects On Vitamin D And BoneThe chronic use of phenytoin in patients with epilepsy has been associated with decreased bone mineral density (osteopenia, osteoporosis, and osteomalacia) and bone fractures. Phenytoin induces hepatic metabolizing enzymes. This may enhance the metabolism of vitamin D and decrease vitamin D levels, which may lead to vitamin D deficiency, hypocalcemia, and hypophosphatemia. Consideration should be given to screening with bone-related laboratory and radiological tests as appropriate and initiating treatment plans according to established guidelines. Renal Or Hepatic Impairment Or HypoalbuminemiaBecause the fraction of unbound phenytoin is increased in patients with renal or hepatic disease, or in those with hypoalbuminemia, the monitoring of phenytoin serum levels should be based on the unbound fraction in those patients. Exacerbation Of PorphyriaIn view of isolated reports associating phenytoin with exacerbation of porphyria, caution should be exercised in using this medication in patients suffering from this disease. Teratogenicity And Other Harm To The NewbornDILANTIN may cause fetal harm when administered to a pregnant woman. Prenatal exposure to phenytoin may increase the risks for congenital malformations and other adverse developmental outcomes [see Use In Specific Populations]. Increased frequencies of major malformations (such as orofacial clefts and cardiac defects), and abnormalities characteristic of fetal hydantoin syndrome, including dysmorphic skull and facial features, nail and digit hypoplasia, growth abnormalities (including microcephaly), and cognitive deficits, have been reported among children born to epileptic women who took phenytoin alone or in combination with other antiepileptic drugs during pregnancy. There have been several reported cases of malignancies, including neuroblastoma. A potentially life-threatening bleeding disorder related to decreased levels of vitamin K-dependent clotting factors may occur in newborns exposed to phenytoin in utero. This drug-induced condition can be prevented with vitamin K administration to the mother before delivery and to the neonate after birth. Slow Metabolizers Of PhenytoinA small percentage of individuals who have been treated with phenytoin have been shown to metabolize the drug slowly. Slow metabolism may be caused by limited enzyme availability and lack of induction; it appears to be genetically determined. If early signs of dose-related central nervous system (CNS) toxicity develop, serum levels should be checked immediately. HyperglycemiaHyperglycemia, resulting from the drug's inhibitory effects on insulin release, has been reported. Phenytoin may also raise the serum glucose level in diabetic patients. Serum Phenytoin Levels Above Therapeutic RangeSerum levels of phenytoin sustained above the therapeutic range may produce confusional states referred to as "delirium," "psychosis," or "encephalopathy," or rarely irreversible cerebellar dysfunction and/or cerebellar atrophy. Accordingly, at the first sign of acute toxicity, serum levels should be immediately checked. Dose reduction of phenytoin therapy is indicated if serum levels are excessive; if symptoms persist, termination is recommended. Patient Counseling InformationAdvise patients to read the FDA-approved patient labeling (Medication Guide). Administration InformationAdvise patients taking phenytoin of the importance of adhering strictly to the prescribed dosage regimen, and of informing the physician of any clinical condition in which it is not possible to take the drug orally as prescribed, e.g., surgery, etc. Advise patients not to use capsules which are discolored. Withdrawal Of Antiepileptic DrugsAdvise patients not to discontinue use of DILANTIN without consulting with their healthcare provider. DILANTIN should normally be gradually withdrawn to reduce the potential for increased seizure frequency and status epilepticus [see WARNINGS AND PRECAUTIONS]. Suicidal Ideation And BehaviorCounsel patients, their caregivers, and families that AEDs, including DILANTIN, may increase the risk of suicidal thoughts and behavior and advise them of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers [see WARNINGS AND PRECAUTIONS]. Serious Dermatologic ReactionsAdvise patients of the early signs and symptoms of severe cutaneous adverse reactions and to report any occurrence immediately to a physician [see WARNINGS AND PRECAUTIONS]. Potential Signs Of Drug Reaction With Eosinophilia And Systemic Symptoms (DRESS) And Other Systemic ReactionsAdvise patients of the early toxic signs and symptoms of potential hematologic, dermatologic, hypersensitivity, or hepatic reactions. These symptoms may include, but are not limited to, fever, sore throat, rash, ulcers in the mouth, easy bruising, lymphadenopathy, facial swelling, and petechial or purpuric hemorrhage, and in the case of liver reactions, anorexia, nausea/vomiting, or jaundice. Advise the patient that, because these signs and symptoms may signal a serious reaction, that they must report any occurrence immediately to a physician. In addition, advise the patient that these signs and symptoms should be reported even if mild or when occurring after extended use [see WARNINGS AND PRECAUTIONS]. Cardiac EffectsCounsel patients that cases of bradycardia and cardiac arrest have been reported, both at recommended phenytoin doses and levels, and in association with phenytoin toxicity. Patients should report cardiac signs or symptoms to their healthcare provider [see WARNINGS AND PRECAUTIONS and OVERDOSE]. AngioedemaAdvise patients to discontinue DILANTIN and seek immediate medical care if they develop signs or symptoms of angioedema, such as facial, perioral, or upper airway swelling [see WARNINGS AND PRECAUTIONS]. Effects Of Alcohol Use And Other Drugs And Over-The-Counter Drug InteractionsCaution patients against the use of other drugs or alcoholic beverages without first seeking their physician's advice [DRUG INTERACTIONS]. Inform patients that certain over-the-counter medications (e.g., antacids, cimetidine, and omeprazole), vitamins (e.g., folic acid), and herbal supplements (e.g., St. John's wort) can alter their phenytoin levels. HyperglycemiaAdvise patients that DILANTIN may cause an increase in blood glucose levels [see WARNINGS AND PRECAUTIONS]. Gingival HyperplasiaAdvise patients of the importance of good dental hygiene in order to minimize the development of gingival hyperplasia and its complications. Neurologic EffectsCounsel patients that DILANTIN may cause dizziness, gait disturbance, decreased coordination and somnolence. Advise patients taking DILANTIN not to drive, operate complex machinery, or engage in other hazardous activities until they have become accustomed to any such effects associated with DILANTIN. Use In PregnancyInform pregnant women and women of childbearing potential that use of DILANTIN during pregnancy can cause fetal harm, including an increased risk for cleft lip and/or cleft palate (oral clefts), cardiac defects, dysmorphic skull and facial features, nail and digit hypoplasia, growth abnormalities (including microcephaly), and cognitive deficits. When appropriate, counsel pregnant women and women of childbearing potential about alternative therapeutic options. Advise women of childbearing potential who are not planning a pregnancy to use effective contraception while using DILANTIN, keeping in mind that there is a potential for decreased hormonal contraceptive efficacy [see DRUG INTERACTIONS]. Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breastfeeding or intend to breastfeed during therapy [see Use In Specific Populations]. Encourage patients to enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy [see Use In Specific Populations]. Nonclinical ToxicologyCarcinogenesis, Mutagenesis, Impairment Of FertilityCarcinogenesis [See WARNINGS AND PRECAUTIONS]In carcinogenicity studies, phenytoin was administered in the diet to mice (10, 25, or 45 mg/kg/day) and rats (25, 50, or 100 mg/kg/day) for 2 years. The incidences of hepatocellular tumors were increased in male and female mice at the highest dose. No increases in tumor incidence were observed in rats. The highest doses tested in these studies were associated with peak serum phenytoin levels below human therapeutic concentrations. In carcinogenicity studies reported in the literature, phenytoin was administered in the diet for 2 years at doses up to 600 ppm (approximately 160 mg/kg/day) to mice and up to 2400 ppm (approximately 120 mg/kg/day) to rats. The incidences of hepatocellular tumors were increased in female mice at all but the lowest dose tested. No increases in tumor incidence were observed in rats. MutagenesisPhenytoin was negative in the Ames test and in the in vitro clastogenicity assay in Chinese hamster ovary (CHO) cells. In studies reported in the literature, phenytoin was negative in the in vitro mouse lymphoma assay and the in vivo micronucleus assay in mouse. Phenytoin was clastogenic in the in vitro sister chromatid exchange assay in CHO cells. FertilityPhenytoin has not been adequately assessed for effects on male or female fertility. Use In Specific PopulationsPregnancyPregnancy Exposure RegistryThere is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antiepileptic drugs (AEDs), such as DILANTIN, during pregnancy. Physicians are advised to recommend that pregnant patients taking DILANTIN enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the tollfree number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/ Risk SummaryIn humans, prenatal exposure to phenytoin may increase the risks for congenital malformations and other adverse developmental outcomes. Prenatal phenytoin exposure is associated with an increased incidence of major malformations, including orofacial clefts and cardiac defects. In addition, the fetal hydantoin syndrome, a pattern of abnormalities including dysmorphic skull and facial features, nail and digit hypoplasia, growth abnormalities (including microcephaly), and cognitive deficits has been reported among children born to epileptic women who took phenytoin alone or in combination with other antiepileptic drugs during pregnancy [see Data]. There have been several reported cases of malignancies, including neuroblastoma, in children whose mothers received phenytoin during pregnancy. Administration of phenytoin to pregnant animals resulted in an increased incidence of fetal malformations and other manifestations of developmental toxicity (including embryofetal death, growth impairment, and behavioral abnormalities) in multiple species at clinically relevant doses [see Data]. In the U.S. general population, the estimated background risk of major birth defects and of miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. The background risk of major birth defects and miscarriage for the indicated population is unknown. Clinical ConsiderationsDisease-associated maternal risk An increase in seizure frequency may occur during pregnancy because of altered phenytoin pharmacokinetics. Periodic measurement of serum phenytoin concentrations may be valuable in the management of pregnant women as a guide to appropriate adjustment of dosage [see DOSAGE AND ADMINISTRATION]. However, postpartum restoration of the original dosage will probably be indicated [see CLINICAL PHARMACOLOGY]. Fetal/Neonatal Adverse Reactions A potentially life-threatening bleeding disorder related to decreased levels of vitamin K-dependent clotting factors may occur in newborns exposed to phenytoin in utero. This drug-induced condition can be prevented with vitamin K administration to the mother before delivery and to the neonate after birth. DataHuman Data Meta-analyses using data from published observational studies and registries have estimated an approximately 2.4-fold increased risk for any major malformation in children with prenatal phenytoin exposure compared to controls. An increased risk of heart defects, facial clefts, and digital hypoplasia has been reported. The fetal hydantoin syndrome is a pattern of congenital anomalies including craniofacial anomalies, nail and digital hypoplasia, prenatal-onset growth deficiency, and neurodevelopmental deficiencies. Animal Data Administration of phenytoin to pregnant rats, rabbits, and mice during organogenesis resulted in embryofetal death, fetal malformations, and decreased fetal growth. Malformations (including craniofacial, cardiovascular, neural, limb, and digit abnormalities) were observed in rats, rabbits, and mice at doses as low as 100, 75, and 12.5 mg/kg, respectively. LactationRisk SummaryPhenytoin is secreted in human milk. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for DILANTIN and any potential adverse effects on the breastfed infant from DILANTIN or from the underlying maternal condition. Pediatric UseInitially, 5 mg/kg/day in two or three equally divided doses, with subsequent dosage individualized to a maximum of 300 mg daily. A recommended daily maintenance dosage is usually 4 to 8 mg/kg. Children over 6 years and adolescents may require the minimum adult dosage (300 mg/day) [see DOSAGE AND ADMINISTRATION]. Geriatric UsePhenytoin clearance tends to decrease with increasing age [see CLINICAL PHARMACOLOGY]. Lower or less frequent dosing may be required [see DOSAGE AND ADMINISTRATION]. Renal And/Or Hepatic Impairment Or HypoalbuminemiaThe liver is the chief site of biotransformation of phenytoin; patients with impaired liver function, elderly patients, or those who are gravely ill may show early signs of toxicity. Because the fraction of unbound phenytoin is increased in patients with renal or hepatic disease, or in those with hypoalbuminemia, the monitoring of phenytoin serum levels should be based on the unbound fraction in those patients. Overdose & Contraindications OVERDOSEThe lethal dose in pediatric patients is not known. The lethal dose in adults is estimated to be 2 to 5 grams. The initial symptoms are nystagmus, ataxia, and dysarthria. Other signs are tremor, hyperreflexia, lethargy, slurred speech, blurred vision, nausea, and vomiting. The patient may become comatose and hypotensive. Bradycardia and cardiac arrest have been reported [see WARNINGS AND PRECAUTIONS]. Death is caused by respiratory and circulatory depression. There are marked variations among individuals with respect to phenytoin serum levels where toxicity may occur. Nystagmus, on lateral gaze, usually appears at 20 mcg/mL, ataxia at 30 mcg/mL; dysarthria and lethargy appear when the serum concentration is over 40 mcg/mL, but as high a concentration as 50 mcg/mL has been reported without evidence of toxicity. As much as 25 times the therapeutic dose has been taken to result in a serum concentration over 100 mcg/mL with complete recovery. Irreversible cerebellar dysfunction and atrophy have been reported. TreatmentTreatment is nonspecific since there is no known antidote. The adequacy of the respiratory and circulatory systems should be carefully observed and appropriate supportive measures employed. Hemodialysis can be considered since phenytoin is not completely bound to plasma proteins. Total exchange transfusion has been used in the treatment of severe intoxication in pediatric patients. In acute overdosage the possibility of other CNS depressants, including alcohol, should be borne in mind. CONTRAINDICATIONSDILANTIN is contraindicated in patients with:
CLINICAL PHARMACOLOGYMechanism Of ActionThe precise mechanism by which phenytoin exerts its therapeutic effect has not been established but is thought to involve the voltage-dependent blockade of membrane sodium channels resulting in a reduction in sustained high-frequency neuronal discharges. PharmacokineticsAbsorptionFor DILANTIN capsules, peak serum levels occur 4 to 12 hours after administration. Steady-state therapeutic levels are achieved at least 7 to 10 days (5–7 half-lives) after initiation of therapy with recommended doses of 300 mg/day. When serum level determinations are necessary, they should be obtained at least 5–7 half-lives after treatment initiation, dosage change, or addition or subtraction of another drug to the regimen so that equilibrium or steady-state will have been achieved. DistributionPhenytoin is extensively bound to serum plasma proteins. EliminationThe plasma half-life in man after oral administration of phenytoin averages 22 hours, with a range of 7 to 42 hours. Metabolism Phenytoin is metabolized by hepatic cytochrome P450 enzymes CYP2C9 and CYP2C19. Because phenytoin is hydroxylated in the liver by an enzyme system which is saturable at high serum levels, small incremental doses may increase the half-life and produce very substantial increases in serum levels, when these are in the upper range. The steady-state level may be disproportionately increased, with resultant intoxication, from an increase in dosage of 10% or more. In most patients maintained at a steady dosage, stable phenytoin serum levels are achieved. There may be wide interpatient variability in phenytoin serum levels with equivalent dosages. Patients with unusually low levels may be noncompliant or hypermetabolizers of phenytoin. Unusually high levels result from liver disease, variant CYP2C9 and CYP2C19 alleles, or drug interactions which result in metabolic interference. The patient with large variations in phenytoin serum levels, despite standard doses, presents a difficult clinical problem. Serum level determinations in such patients may be particularly helpful. As phenytoin is highly protein bound, free phenytoin levels may be altered in patients whose protein binding characteristics differ from normal. Excretion Most of the drug is excreted in the bile as inactive metabolites which are then reabsorbed from the intestinal tract and excreted in the urine. Urinary excretion of phenytoin and its metabolites occurs partly with glomerular filtration but, more importantly, by tubular secretion. Specific PopulationsAgeGeriatric Population Phenytoin clearance tends to decrease with increasing age (20% less in patients over 70 years of age relative to that in patients 20 to 30 years of age). Since phenytoin clearance is decreased slightly in elderly patients, lower or less frequent dosing may be required [see DOSAGE AND ADMINISTRATION]. Sex/RaceGender and race have no significant impact on phenytoin pharmacokinetics. Renal Or Hepatic ImpairmentIncreased fraction of unbound phenytoin in patients with renal or hepatic disease, or in those with hypoalbuminemia has been reported. PregnancyIt has been reported in the literature that the plasma clearance of phenytoin generally increased during pregnancy, reached a peak in the third trimester and returned to the level of pre-pregnancy after few weeks or months of delivery. Drug Interaction StudiesPhenytoin is metabolized by hepatic cytochrome P450 enzymes CYP2C9 and CYP2C19. Phenytoin is a potent inducer of hepatic drug-metabolizing enzymes [see DRUG INTERACTIONS]. PATIENT INFORMATIONDILANTIN What is the most important information I should know about DILANTIN? Call your healthcare provider between visits as needed, especially if you are worried about symptoms. Call your healthcare provider even if the symptoms are mild or if you have been taking DILANTIN for an extended period of time. These symptoms can be a sign of a serious allergic reaction.
What is DILANTIN? DILANTIN is a prescription medicine used to treat certain types of seizures called tonic-clonic (grand mal) and psychomotor (temporal lobe) seizures. Do not take DILANTIN if you:
Before taking DILANTIN, tell your healthcare provider about all of your medical conditions, including if you:
Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements. These medicines can change the levels of DILANTIN in your blood. Taking DILANTIN with certain other medicines can cause side effects or affect how well they work. Do not start or stop other medicines without talking to your healthcare provider. Know the medicines you take. Keep a list of them and show it to your healthcare provider and pharmacist when you get a new medicine. How should I take DILANTIN?
What should I avoid while taking DILANTIN?
What are the possible side effects of DILANTIN? See "What is the most important information I should know about DILANTIN?" DILANTIN may cause other serious side effects including:
Call your healthcare provider right away, if you have any of the symptoms listed above. The most common side effects of DILANTIN include:
DILANTIN can cause overgrowth of your gums. Brushing and flossing your teeth and seeing a dentist regularly while taking DILANTIN can help prevent this from happening. These are not all of the possible side effects of DILANTIN. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. How should I store DILANTIN?
Keep DILANTIN and all medicines out of the reach of children. General information about the safe and effective use of DILANTIN. Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use DILANTIN for a condition for which it was not prescribed. Do not give DILANTIN to other people, even if they have the same symptoms that you have. It may harm them. You can ask your pharmacist or healthcare provider for information about DILANTIN that is written for health professionals. What are the ingredients in DILANTIN Capsules? DILANTIN 30 mg: Active ingredient: 30 mg phenytoin sodium, USP Inactive ingredients: lactose monohydrate, confectioner's sugar, talc, and magnesium stearate. The capsule shell cap and body contain Titanium Dioxide (cap and body); gelatin (cap and body); D&C yellow No. 10 (cap); FD&C red No. 3 (cap). DILANTIN 100 mg: Active ingredient: 100 mg phenytoin sodium, USP Inactive ingredients: lactose monohydrate, confectioner's sugar, talc, and magnesium stearate. The capsule body contains titanium dioxide and gelatin. The capsule cap contains FD&C red No. 28, FD&C yellow No. 6, and gelatin. FromReport Problems to the Food and Drug AdministrationYou are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088. What type of seizure is phenytoin used for?Descriptions. Phenytoin is used to control seizures (convulsions), including tonic-clonic (grand mal) and psychomotor (temporal lobe) seizures, in the treatment of epilepsy. It is also used to prevent and treat seizures that occur during brain surgery.
Can phenytoin treat seizures?Phenytoin has been used for many years to treat children with partial and generalized tonic-clonic seizures. It can cause side effects from high doses and allergic reactions at any dosage.
What is phenytoin mechanism of action?Mechanism of Action
Phenytoin is an antiepileptic drug which can be useful in the treatment of epilepsy. The primary site of action appears to be the motor cortex where spread of seizure activity is inhibited.
Why is phenytoin used for status epilepticus?Phenytoin, the traditional drug of choice in the management of epilepsy, also helps suppress generalized tonic-clonic and partial-onset seizures [40]. In addition, this AED can serve as seizure prophylaxis after traumatic brain injury [41].
|