Python tìm chuỗi trong danh sách

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Show

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

Kiểm tra giá trị thật

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong một hoặc điều kiện hoặc dưới dạng toán hạng của các phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa phương thức

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
37 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 hoặc phương thức
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
39 trả về 0 khi được gọi với đối tượng. Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • hằng số được xác định là sai.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    38

  • số không của bất kỳ loại số nào.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    43,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    44,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    45,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    46

  • trình tự và bộ sưu tập trống.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    47,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    48,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    49,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 nếu sai và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu đúng, trừ khi có quy định khác. (Ngoại lệ quan trọng. các phép toán Boolean
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
57 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
58 luôn trả về một trong các toán hạng của chúng. )

Phép toán Boolean — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 58, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 57, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 61

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
62

nếu x sai, thì y, ngược lại x

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
63

nếu x sai, thì x, ngược lại y

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
64

nếu x sai, thì

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, ngược lại thì
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(3)

ghi chú

  1. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất sai

  2. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất đúng

  3. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    61 có mức ưu tiên thấp hơn so với các toán tử không phải Boolean, vì vậy
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    68 được hiểu là
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    69 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    70 là một lỗi cú pháp

so sánh

Có tám thao tác so sánh trong Python. Tất cả chúng đều có cùng mức độ ưu tiên (cao hơn so với các phép toán Boolean). So sánh có thể được xâu chuỗi tùy ý;

Bảng này tóm tắt các hoạt động so sánh

Hoạt động

Nghĩa

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74

hoàn toàn ít hơn

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75

nhỏ hơn hoặc bằng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76

tuyệt đối lớn hơn

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77

lớn hơn hoặc bằng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78

bình đẳng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79

không công bằng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
80

nhận dạng đối tượng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
81

danh tính đối tượng phủ nhận

Các đối tượng thuộc các loại khác nhau, ngoại trừ các loại số khác nhau, không bao giờ so sánh bằng nhau. Toán tử

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 luôn được xác định nhưng đối với một số loại đối tượng (ví dụ: đối tượng lớp) tương đương với. Các toán tử
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77 chỉ được xác định khi chúng có ý nghĩa;

Các thể hiện không giống nhau của một lớp thường được so sánh là không bằng nhau trừ khi lớp đó định nghĩa phương thức

Các thể hiện của một lớp không thể được sắp xếp theo thứ tự đối với các thể hiện khác của cùng một lớp hoặc các loại đối tượng khác, trừ khi lớp đó định nghĩa đủ các phương thức , , , và (nói chung là đủ, nếu bạn muốn ý nghĩa quy ước của

Không thể tùy chỉnh hành vi của toán tử và;

Hai thao tác nữa có cùng mức ưu tiên cú pháp và , được hỗ trợ bởi các loại hoặc triển khai phương thức

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
00

Các loại số — , ,

Có ba loại số riêng biệt. số nguyên, số dấu phẩy động và số phức. Ngoài ra, Booleans là một kiểu con của số nguyên. Số nguyên có độ chính xác không giới hạn. Số dấu phẩy động thường được triển khai bằng cách sử dụng double trong C; . Số phức có phần thực và phần ảo, mỗi phần là một số dấu chấm động. Để trích xuất các phần này từ một số phức z, hãy sử dụng

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
05 và
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
06. (Thư viện chuẩn bao gồm các loại số bổ sung , cho số hữu tỷ và , cho số dấu phẩy động với độ chính xác do người dùng xác định. )

Các số được tạo bởi các chữ số hoặc là kết quả của các hàm và toán tử tích hợp. Các số nguyên nguyên không tô điểm (bao gồm cả số hex, bát phân và nhị phân) mang lại số nguyên. Chữ số có chứa dấu thập phân hoặc dấu mũ mang lại số dấu phẩy động. Việc thêm

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
09 hoặc
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
10 vào một chữ số sẽ tạo ra một số ảo (một số phức có phần thực bằng 0) mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để nhận được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. khi một toán tử số học nhị phân có các toán hạng thuộc các kiểu số khác nhau, thì toán hạng có loại "hẹp hơn" được mở rộng sang toán hạng kia, trong đó số nguyên hẹp hơn dấu phẩy động, hẹp hơn phức hợp. So sánh giữa các số thuộc các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đang được so sánh.

Các hàm tạo , , và có thể được sử dụng để tạo các số thuộc một loại cụ thể

Tất cả các loại số (ngoại trừ phức tạp) đều hỗ trợ các thao tác sau (để biết mức độ ưu tiên của các thao tác, xem phần )

Hoạt động

Kết quả

ghi chú

tài liệu đầy đủ

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
14

tổng của x và y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
15

sự khác biệt của x và y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
16

sản phẩm của x và y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
17

thương của x và y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
18

thương số sàn của x và y

(1)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
19

phần còn lại của

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
17

(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
21

x phủ nhận

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
22

x không thay đổi

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
23

giá trị tuyệt đối hoặc độ lớn của x

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
25

x chuyển thành số nguyên

(3)(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
27

x được chuyển đổi thành dấu phẩy động

(4)(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
29

số phức có phần thực là phần ảo. tôi mặc định là không

(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
31

liên hợp của số phức c

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
32

cặp

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
33

(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
35

x lũy thừa y

(5)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
37

x lũy thừa y

(5)

ghi chú

  1. Còn gọi là phép chia số nguyên. Giá trị kết quả là một số nguyên, mặc dù loại kết quả không nhất thiết phải là int. Kết quả luôn được làm tròn về phía âm vô cực.

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    38 là _______0_______42, _______51_______40 là _______51_______41, _______51_______42 là _______51_______41, và _______51_______44 là _________42

  2. Không dành cho số phức. Thay vào đó, hãy chuyển đổi thành float bằng cách sử dụng nếu thích hợp

  3. Chuyển đổi từ dấu phẩy động sang số nguyên có thể làm tròn hoặc cắt ngắn như trong C;

  4. float cũng chấp nhận các chuỗi “nan” và “inf” với tiền tố tùy chọn “+” hoặc “-” cho Không phải là Số (NaN) và vô cực dương hoặc âm

  5. Python định nghĩa

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    49 và
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    50 là
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55, như thường thấy đối với các ngôn ngữ lập trình

  6. Các chữ số được chấp nhận bao gồm các chữ số

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 đến
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    53 hoặc bất kỳ mã Unicode tương đương nào (điểm mã với thuộc tính
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    54)

    Xem https. //www. unicode. tổ chức/Công khai/14. 0. 0/ucd/extracted/DerivedNumericType. txt để biết danh sách đầy đủ các điểm mã với thuộc tính

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    54

Tất cả các loại ( và ) cũng bao gồm các thao tác sau

Hoạt động

Kết quả

x cắt ngắn thành

x làm tròn đến n chữ số, làm tròn một nửa thành chẵn. Nếu n bị bỏ qua, nó mặc định là 0

lớn nhất <= x

nhỏ nhất >= x

Đối với các hoạt động số bổ sung, hãy xem và mô-đun

Hoạt động Bitwise trên các loại số nguyên

Hoạt động bitwise chỉ có ý nghĩa đối với số nguyên. Kết quả của các hoạt động theo bit được tính toán như thể được thực hiện trong phần bù hai với số lượng bit dấu vô hạn

Tất cả các ưu tiên của các phép toán bitwise nhị phân đều thấp hơn các phép toán số và cao hơn các phép so sánh;

Bảng này liệt kê các hoạt động bitwise được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
71

bitwise hoặc của x và y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
72

loại trừ theo bit hoặc của x và y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
73

bitwise và của x và y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
74

x dịch sang trái n bit

(1)(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
75

x dịch sang phải n bit

(1)(3)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
76

các bit của x đảo ngược

ghi chú

  1. Số lần thay đổi âm là bất hợp pháp và gây ra một sự gia tăng

  2. Dịch trái n bit tương đương với phép nhân với

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    78

  3. Dịch chuyển sang phải n bit tương đương với phép chia sàn cho

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    78

  4. Thực hiện các tính toán này với ít nhất một bit mở rộng dấu phụ trong biểu diễn phần bù của hai hữu hạn (độ rộng bit làm việc là

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    80 trở lên) là đủ để có được kết quả tương tự như thể có vô số bit dấu

Các phương thức bổ sung trên các kiểu số nguyên

Kiểu int thực hiện. Ngoài ra nó còn cung cấp thêm một số phương pháp

int. bit_length()

Trả về số bit cần thiết để biểu diễn một số nguyên ở dạng nhị phân, không bao gồm dấu và các số 0 ở đầu

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

Chính xác hơn, nếu

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 khác 0, thì
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
83 là số nguyên dương duy nhất
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
84 sao cho
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
85. Tương tự, khi
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
23 đủ nhỏ để có logarit được làm tròn chính xác, thì
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
87. Nếu
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 bằng 0, thì
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
83 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

Tương đương với

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6

Mới trong phiên bản 3. 1

int. bit_count()

Trả về số đơn vị trong biểu diễn nhị phân của giá trị tuyệt đối của số nguyên. Đây còn được gọi là số lượng dân số. Ví dụ

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3

Tương đương với

def bit_count(self):
    return bin(self).count("1")

Mới trong phiên bản 3. 10

int. to_byte(độ dài=1, byteorder='big', *, signed=False)

Trả về một mảng byte đại diện cho một số nguyên

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'

Số nguyên được biểu diễn bằng byte độ dài và mặc định là 1. An được nâng lên nếu số nguyên không thể biểu thị được với số byte đã cho

Đối số byteorder xác định thứ tự byte được sử dụng để biểu thị số nguyên và mặc định là

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92. Nếu thứ tự byte là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92, thì byte quan trọng nhất nằm ở đầu mảng byte. Nếu byteorder là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
94, thì byte quan trọng nhất nằm ở cuối mảng byte

Đối số đã ký xác định xem phần bù của hai có được sử dụng để biểu diễn số nguyên hay không. Nếu được ký là

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 và một số nguyên âm được đưa ra, thì an được nâng lên. Giá trị mặc định cho đã ký là
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

Các giá trị mặc định có thể được sử dụng để biến một số nguyên thành một đối tượng byte đơn một cách thuận tiện. Tuy nhiên, khi sử dụng các đối số mặc định, đừng cố chuyển đổi một giá trị lớn hơn 255, nếu không bạn sẽ nhận được một

>>> (65).to_bytes()
b'A'

Tương đương với

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)

Mới trong phiên bản 3. 2

Đã thay đổi trong phiên bản 3. 11. Đã thêm các giá trị đối số mặc định cho

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
99 và
def bit_count(self):
    return bin(self).count("1")
00.

phương thức lớp int. từ_byte(byte , thứ tự byte='big', *, signed=False)

Trả về số nguyên được đại diện bởi mảng byte đã cho

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680

Các byte đối số phải là một hoặc một byte tạo ra có thể lặp lại

Đối số byteorder xác định thứ tự byte được sử dụng để biểu thị số nguyên và mặc định là

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92. Nếu thứ tự byte là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92, thì byte quan trọng nhất nằm ở đầu mảng byte. Nếu byteorder là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
94, thì byte quan trọng nhất nằm ở cuối mảng byte. Để yêu cầu thứ tự byte gốc của hệ thống máy chủ, hãy sử dụng làm giá trị thứ tự byte

Đối số có dấu cho biết liệu phần bù hai có được sử dụng để biểu diễn số nguyên hay không

Tương đương với

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n

Mới trong phiên bản 3. 2

Đã thay đổi trong phiên bản 3. 11. Đã thêm giá trị đối số mặc định cho

def bit_count(self):
    return bin(self).count("1")
00.

int. as_integer_ratio()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số nguyên ban đầu và có mẫu số dương. Tỷ lệ nguyên của các số nguyên (số nguyên) luôn là số nguyên làm tử số và

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 làm mẫu số

Mới trong phiên bản 3. 8

Phương pháp bổ sung trên Float

Kiểu float thực hiện. float cũng có các phương thức bổ sung sau

nổi. as_integer_ratio()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số float ban đầu và có mẫu số dương. Tăng trên vô số và trên NaN

nổi. is_integer()

Trả về

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu đối tượng float là hữu hạn với giá trị nguyên và ngược lại là
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Hai phương pháp hỗ trợ chuyển đổi sang và từ các chuỗi thập lục phân. Vì số float của Python được lưu trữ bên trong dưới dạng số nhị phân, nên việc chuyển đổi số float thành hoặc từ chuỗi thập phân thường liên quan đến một lỗi làm tròn nhỏ. Ngược lại, các chuỗi thập lục phân cho phép biểu diễn và đặc tả chính xác các số dấu phẩy động. Điều này có thể hữu ích khi gỡ lỗi và trong công việc số

nổi. hex()

Trả về biểu diễn của số dấu phẩy động dưới dạng chuỗi thập lục phân. Đối với các số có dấu phẩy động hữu hạn, biểu diễn này sẽ luôn bao gồm một số ở đầu

def bit_count(self):
    return bin(self).count("1")
12 và một số sau ____113_______13 và số mũ

phương thức lớp phao. từ hex(s)

Phương thức lớp để trả về số float được biểu thị bằng chuỗi thập lục phân s. Chuỗi s có thể có khoảng trắng ở đầu và cuối

Lưu ý rằng đó là một phương thức cá thể, trong khi đó là một phương thức lớp

Một chuỗi thập lục phân có dạng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
0

trong đó tùy chọn

def bit_count(self):
    return bin(self).count("1")
16 có thể bằng cách hoặc là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
69 hoặc là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
70,
def bit_count(self):
    return bin(self).count("1")
19 và
def bit_count(self):
    return bin(self).count("1")
20 là các chuỗi chữ số thập lục phân và
def bit_count(self):
    return bin(self).count("1")
21 là số nguyên thập phân có dấu ở đầu tùy chọn. Trường hợp không đáng kể và phải có ít nhất một chữ số thập lục phân trong số nguyên hoặc phân số. Cú pháp này tương tự như cú pháp quy định tại mục 6. 4. 4. 2 của tiêu chuẩn C99 và cả cú pháp được sử dụng trong Java 1. 5 trở đi. Cụ thể, đầu ra của có thể sử dụng dưới dạng ký tự dấu phẩy động thập lục phân trong mã C hoặc Java và các chuỗi thập lục phân được tạo bởi ký tự định dạng __113_______23 của C hoặc ____113_______24 của Java được chấp nhận bởi

Lưu ý rằng số mũ được viết dưới dạng thập phân chứ không phải thập lục phân và nó mang lại sức mạnh của 2 để nhân hệ số. Ví dụ: chuỗi thập lục phân

def bit_count(self):
    return bin(self).count("1")
26 đại diện cho số dấu phẩy động
def bit_count(self):
    return bin(self).count("1")
27 hoặc
def bit_count(self):
    return bin(self).count("1")
28

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
1

Áp dụng chuyển đổi ngược lại cho

def bit_count(self):
    return bin(self).count("1")
28 sẽ cho một chuỗi thập lục phân khác đại diện cho cùng một số

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
2

Băm các loại số

Đối với các số

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 và
def bit_count(self):
    return bin(self).count("1")
31, có thể thuộc các loại khác nhau, yêu cầu là ____113_______32 bất cứ khi nào
def bit_count(self):
    return bin(self).count("1")
33 (xem tài liệu về phương pháp để biết thêm chi tiết). Để dễ triển khai và hiệu quả trên nhiều loại số (bao gồm , và ) Hàm băm của Python cho các loại số dựa trên một hàm toán học duy nhất được xác định cho bất kỳ số hữu tỷ nào và do đó áp dụng cho tất cả các trường hợp của và , và tất cả các trường hợp hữu hạn . Về cơ bản, hàm này được cho bởi modulo rút gọn
def bit_count(self):
    return bin(self).count("1")
43 cho số nguyên tố cố định
def bit_count(self):
    return bin(self).count("1")
43. Giá trị của
def bit_count(self):
    return bin(self).count("1")
43 được cung cấp cho Python dưới dạng thuộc tính
def bit_count(self):
    return bin(self).count("1")
46 của

Chi tiết triển khai CPython. Hiện tại, số nguyên tố được sử dụng là

def bit_count(self):
    return bin(self).count("1")
48 trên các máy có độ dài C 32 bit và
def bit_count(self):
    return bin(self).count("1")
49 trên các máy có độ dài C 64 bit

Dưới đây là các quy tắc chi tiết

  • Nếu

    def bit_count(self):
        return bin(self).count("1")
    
    50 là một số hữu tỉ không âm và
    def bit_count(self):
        return bin(self).count("1")
    
    51 không chia hết cho
    def bit_count(self):
        return bin(self).count("1")
    
    43, hãy định nghĩa
    def bit_count(self):
        return bin(self).count("1")
    
    53 là
    def bit_count(self):
        return bin(self).count("1")
    
    54, trong đó
    def bit_count(self):
        return bin(self).count("1")
    
    55 cho số nghịch đảo của
    def bit_count(self):
        return bin(self).count("1")
    
    51 theo modulo
    def bit_count(self):
        return bin(self).count("1")
    
    43

  • Nếu

    def bit_count(self):
        return bin(self).count("1")
    
    50 là một số hữu tỉ không âm và
    def bit_count(self):
        return bin(self).count("1")
    
    51 chia hết cho
    def bit_count(self):
        return bin(self).count("1")
    
    43 (nhưng
    def bit_count(self):
        return bin(self).count("1")
    
    61 thì không) thì
    def bit_count(self):
        return bin(self).count("1")
    
    51 không có modulo nghịch đảo
    def bit_count(self):
        return bin(self).count("1")
    
    43 và quy tắc trên không áp dụng;

  • Nếu

    def bit_count(self):
        return bin(self).count("1")
    
    50 là một số hữu tỷ âm, hãy xác định
    def bit_count(self):
        return bin(self).count("1")
    
    53 là
    def bit_count(self):
        return bin(self).count("1")
    
    68. Nếu hàm băm kết quả là
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, hãy thay thế nó bằng
    def bit_count(self):
        return bin(self).count("1")
    
    70

  • Các giá trị cụ thể

    def bit_count(self):
        return bin(self).count("1")
    
    65 và
    def bit_count(self):
        return bin(self).count("1")
    
    72 được sử dụng làm giá trị băm cho vô cực dương hoặc vô cực âm (tương ứng)

  • Đối với một số

    def bit_count(self):
        return bin(self).count("1")
    
    74, các giá trị băm của phần thực và phần ảo được kết hợp bằng cách tính toán
    def bit_count(self):
        return bin(self).count("1")
    
    75, rút ​​gọn modulo
    def bit_count(self):
        return bin(self).count("1")
    
    76 để nó nằm trong
    def bit_count(self):
        return bin(self).count("1")
    
    77. Một lần nữa, nếu kết quả là
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, nó sẽ được thay thế bằng
    def bit_count(self):
        return bin(self).count("1")
    
    70

Để làm rõ các quy tắc trên, đây là một số mã Python ví dụ, tương đương với hàm băm tích hợp, để tính toán hàm băm của một số hữu tỷ, hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
3

Các loại trình lặp

Python hỗ trợ khái niệm lặp qua các vùng chứa. Điều này được thực hiện bằng hai phương pháp riêng biệt; . Các trình tự, được mô tả chi tiết hơn bên dưới, luôn hỗ trợ các phương pháp lặp

Một phương thức cần được xác định cho các đối tượng vùng chứa để cung cấp hỗ trợ

vùng chứa. __iter__()

Trả lại một đối tượng. Đối tượng được yêu cầu hỗ trợ giao thức iterator được mô tả bên dưới. Nếu một vùng chứa hỗ trợ các kiểu lặp khác nhau, thì có thể cung cấp các phương thức bổ sung để yêu cầu cụ thể các trình lặp cho các kiểu lặp đó. (Ví dụ về một đối tượng hỗ trợ nhiều hình thức lặp sẽ là một cấu trúc cây hỗ trợ cả truyền tải theo chiều rộng và theo chiều sâu. ) Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

Bản thân các đối tượng lặp được yêu cầu hỗ trợ hai phương thức sau, cùng nhau tạo thành giao thức lặp

trình lặp. __iter__()

Trả lại chính đối tượng. Điều này là bắt buộc để cho phép sử dụng cả bộ chứa và bộ lặp với câu lệnh và. Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

trình lặp. __next__()

Trả lại mục tiếp theo từ. Nếu không có mục nào khác, hãy đưa ra ngoại lệ. Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

Python định nghĩa một số đối tượng trình lặp để hỗ trợ phép lặp qua các loại trình tự chung và cụ thể, từ điển và các dạng chuyên biệt hơn khác. Các loại cụ thể không quan trọng ngoài việc triển khai giao thức lặp

Khi một phương thức của trình vòng lặp tăng lên, nó phải tiếp tục làm như vậy trong các lần gọi tiếp theo. Việc triển khai không tuân theo thuộc tính này được coi là bị hỏng

Các loại máy phát điện

Python cung cấp một cách thuận tiện để triển khai giao thức lặp. Nếu phương thức

def bit_count(self):
    return bin(self).count("1")
90 của đối tượng vùng chứa được triển khai như một trình tạo, thì nó sẽ tự động trả về một đối tượng trình vòng lặp (về mặt kỹ thuật, một đối tượng trình tạo) cung cấp
def bit_count(self):
    return bin(self).count("1")
90 và các phương thức. Thông tin thêm về máy phát điện có thể được tìm thấy trong

Các loại trình tự — , ,

Có ba loại trình tự cơ bản. danh sách, bộ dữ liệu và đối tượng phạm vi. Các loại trình tự bổ sung được điều chỉnh để xử lý và được mô tả trong các phần dành riêng

Hoạt động tuần tự phổ biến

Các hoạt động trong bảng sau được hỗ trợ bởi hầu hết các loại trình tự, cả có thể thay đổi và không thể thay đổi. ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Bảng này liệt kê các hoạt động trình tự được sắp xếp theo mức độ ưu tiên tăng dần. Trong bảng, s và t là các chuỗi cùng loại, n, i, j và k là các số nguyên và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt

Các phép toán

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
99 có cùng mức độ ưu tiên như các phép toán so sánh. Các phép toán
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
69 (nối) và
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 (lặp lại) có cùng mức độ ưu tiên như các phép toán số tương ứng.

Hoạt động

Kết quả

ghi chú

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
01

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu một mục của s bằng x, ngược lại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
04

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 nếu một phần tử của s bằng x, ngược lại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
07

nối của s và t

(6)(7)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
08 hoặc
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
09

tương đương với việc thêm s vào chính nó n lần

(2)(7)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
10

mục thứ i của s, gốc 0

(3)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
11

lát s từ i đến j

(3)(4)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12

lát s từ i đến j với bước k

(3)(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

chiều dài của s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
14

mục nhỏ nhất của s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
15

mục lớn nhất của s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
16

chỉ số của lần xuất hiện đầu tiên của x trong s (tại hoặc sau chỉ số i và trước chỉ số j)

(số 8)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
17

tổng số lần xuất hiện của x trong s

Các chuỗi cùng loại cũng hỗ trợ so sánh. Cụ thể, các bộ dữ liệu và danh sách được so sánh theo từ điển bằng cách so sánh các phần tử tương ứng. Điều này có nghĩa là để so sánh bằng nhau, mọi phần tử phải so sánh bằng nhau và hai dãy phải cùng loại và có cùng độ dài. (Để biết đầy đủ chi tiết xem trong tài liệu tham khảo ngôn ngữ. )

Các trình vòng lặp chuyển tiếp và đảo ngược qua các chuỗi có thể thay đổi truy cập các giá trị bằng chỉ mục. Chỉ số đó sẽ tiếp tục tiến (hoặc lùi) ngay cả khi trình tự cơ bản bị đột biến. Trình vòng lặp chỉ kết thúc khi gặp an hoặc a (hoặc khi chỉ số giảm xuống dưới 0)

ghi chú

  1. Trong khi các hoạt động

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    98 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    99 chỉ được sử dụng cho thử nghiệm ngăn chặn đơn giản trong trường hợp chung, một số trình tự chuyên biệt (chẳng hạn như , và ) cũng sử dụng chúng cho thử nghiệm trình tự tiếp theo

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    4

  2. Các giá trị của n nhỏ hơn

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 được coi là
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 (tạo ra một chuỗi trống cùng loại với s). Lưu ý rằng các mục trong dãy s không được sao chép; . Điều này thường ám ảnh các lập trình viên Python mới;

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    5

    Điều đã xảy ra là

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    27 là danh sách một phần tử chứa danh sách trống, vì vậy cả ba phần tử của
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    28 đều là tham chiếu đến danh sách trống duy nhất này. Sửa đổi bất kỳ thành phần nào của
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    29 sẽ sửa đổi danh sách đơn này. Bạn có thể tạo một danh sách các danh sách khác nhau theo cách này

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6

    Giải thích thêm có sẵn trong mục Câu hỏi thường gặp

  3. Nếu i hoặc j âm, chỉ số liên quan đến phần cuối của chuỗi s.

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    30 hoặc
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    31 được thay thế. Nhưng lưu ý rằng
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    32 vẫn là
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42

  4. Lát của s từ i đến j được định nghĩa là chuỗi các phần tử có chỉ số k sao cho

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    34. Nếu i hoặc j lớn hơn
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13, hãy sử dụng
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13. Nếu tôi bị bỏ qua hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, hãy sử dụng
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42. Nếu j bị bỏ qua hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, hãy sử dụng
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13. Nếu i lớn hơn hoặc bằng j, lát cắt trống

  5. Phần s từ i đến j với bước k được định nghĩa là chuỗi các mục có chỉ số

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    41 sao cho
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    42. Nói cách khác, các chỉ số là
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    43,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    44,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    45,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    46, v.v., dừng khi đạt đến j (nhưng không bao giờ bao gồm j). Khi k dương, i và j giảm xuống _______114_______13 nếu chúng lớn hơn. Khi k âm, i và j giảm xuống _______114_______48 nếu chúng lớn hơn. Nếu i hoặc j bị bỏ qua hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, chúng trở thành giá trị “kết thúc” (kết thúc này phụ thuộc vào dấu của k). Lưu ý, k không thể bằng 0. Nếu k là
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, nó được xử lý như
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55

  6. Nối các chuỗi bất biến luôn dẫn đến một đối tượng mới. Điều này có nghĩa là việc xây dựng một chuỗi bằng cách nối lặp lại sẽ có chi phí thời gian chạy bậc hai trong tổng chiều dài chuỗi. Để có chi phí thời gian chạy tuyến tính, bạn phải chuyển sang một trong các lựa chọn thay thế bên dưới

    • nếu nối các đối tượng, bạn có thể tạo một danh sách và sử dụng ở cuối hoặc nếu không thì ghi vào một thể hiện và truy xuất giá trị của nó khi hoàn tất

    • nếu nối các đối tượng, bạn có thể sử dụng tương tự hoặc hoặc bạn có thể thực hiện nối tại chỗ với một đối tượng. các đối tượng có thể thay đổi và có cơ chế phân bổ tổng thể hiệu quả

    • nếu nối các đối tượng, thay vào đó hãy mở rộng a

    • đối với các loại khác, hãy điều tra tài liệu lớp có liên quan

  7. Một số loại trình tự (chẳng hạn như ) chỉ hỗ trợ các trình tự vật phẩm tuân theo các mẫu cụ thể và do đó không hỗ trợ nối hoặc lặp lại trình tự

  8. >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    63 tăng khi không tìm thấy x trong s. Không phải tất cả các triển khai đều hỗ trợ chuyển các đối số bổ sung i và j. Các đối số này cho phép tìm kiếm hiệu quả các phần phụ của chuỗi. Truyền các đối số bổ sung gần tương đương với việc sử dụng
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    65, chỉ là không sao chép bất kỳ dữ liệu nào và với chỉ mục được trả về có liên quan đến phần đầu của chuỗi chứ không phải phần đầu của lát cắt

Các loại trình tự bất biến

Thao tác duy nhất mà các loại trình tự bất biến thường triển khai mà các loại trình tự có thể thay đổi cũng không triển khai là hỗ trợ cho trình tự tích hợp sẵn

Hỗ trợ này cho phép các chuỗi bất biến, chẳng hạn như phiên bản, được sử dụng làm khóa và được lưu trữ trong và phiên bản

Cố gắng băm một chuỗi bất biến có chứa các giá trị không thể băm được sẽ dẫn đến

Các loại trình tự có thể thay đổi

Các hoạt động trong bảng sau được xác định trên các loại trình tự có thể thay đổi. ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Trong bảng s là một thể hiện của loại trình tự có thể thay đổi, t là bất kỳ đối tượng có thể lặp lại nào và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt (ví dụ: chỉ chấp nhận các số nguyên đáp ứng hạn chế về giá trị

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
74)

Hoạt động

Kết quả

ghi chú

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
75

mục i của s được thay thế bằng x

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
76

lát s từ i đến j được thay thế bằng nội dung của iterable t

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
77

giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
78

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
79

các phần tử của

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12 được thay thế bằng các phần tử của t

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
81

xóa các phần tử của

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12 khỏi danh sách

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
83

nối x vào cuối dãy (giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
84)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
85

xóa tất cả các mục khỏi s (giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
86)

(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
87

tạo một bản sao nông của s (giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
88)

(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
89 hoặc
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
90

kéo dài s với nội dung của t (phần lớn giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
91)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
92

cập nhật s với nội dung được lặp lại n lần

(6)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
93

chèn x vào s tại chỉ số được cung cấp bởi i (giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
94)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
95 hoặc
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
96

truy xuất mục tại i và cũng xóa mục đó khỏi s

(2)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
97

xóa mục đầu tiên khỏi s trong đó

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
10 bằng x

(3)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99

đảo ngược các mục của s tại chỗ

(4)

ghi chú

  1. t phải có cùng độ dài với lát cắt mà nó đang thay thế

  2. Đối số tùy chọn i mặc định là

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, do đó, theo mặc định, mục cuối cùng được xóa và trả về

  3. >>> (65).to_bytes()
    b'A'
    
    01 tăng khi không tìm thấy x trong s

  4. Phương pháp

    >>> (65).to_bytes()
    b'A'
    
    03 sửa đổi trình tự tại chỗ để tiết kiệm không gian khi đảo ngược một trình tự lớn. Để nhắc nhở người dùng rằng nó hoạt động theo tác dụng phụ, nó không trả về trình tự đảo ngược

  5. >>> (65).to_bytes()
    b'A'
    
    04 và
    >>> (65).to_bytes()
    b'A'
    
    05 được đưa vào để thống nhất với giao diện của các vùng chứa có thể thay đổi không hỗ trợ thao tác cắt (chẳng hạn như và ).
    >>> (65).to_bytes()
    b'A'
    
    05 không phải là một phần của ABC, nhưng hầu hết các lớp trình tự có thể thay đổi cụ thể đều cung cấp nó

    Mới trong phiên bản 3. 3. ______120_______04 và phương thức

    >>> (65).to_bytes()
    b'A'
    
    05.

  6. The value n is an integer, or an object implementing . Zero and negative values of n clear the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    08 under

Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of similarity will vary by application)

class list([iterable])

Lists may be constructed in several ways

  • Using a pair of square brackets to denote the empty list.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    49

  • Using square brackets, separating items with commas.

    >>> (65).to_bytes()
    b'A'
    
    15,
    >>> (65).to_bytes()
    b'A'
    
    16

  • Using a list comprehension.

    >>> (65).to_bytes()
    b'A'
    
    17

  • Using the type constructor.

    >>> (65).to_bytes()
    b'A'
    
    18 or
    >>> (65).to_bytes()
    b'A'
    
    19

Hàm tạo xây dựng một danh sách có các mục giống nhau và theo cùng thứ tự với các mục của iterable. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to

>>> (65).to_bytes()
b'A'
20. For example,
>>> (65).to_bytes()
b'A'
21 returns
>>> (65).to_bytes()
b'A'
22 and
>>> (65).to_bytes()
b'A'
23 returns
>>> (65).to_bytes()
b'A'
24. If no argument is given, the constructor creates a new empty list,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

Many other operations also produce lists, including the built-in

Lists implement all of the and sequence operations. Lists also provide the following additional method

sort(* , key=None , reverse=False)

This method sorts the list in place, using only

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state)

accepts two arguments that can only be passed by keyword ()

key specifies a function of one argument that is used to extract a comparison key from each list element (for example,

>>> (65).to_bytes()
b'A'
29). The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 means that list items are sorted directly without calculating a separate key value

The utility is available to convert a 2. x style cmp function to a key function

reverse is a boolean value. If set to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence (use to explicitly request a new sorted list instance)

The method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade)

For sorting examples and a brief sorting tutorial, see

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises if it can detect that the list has been mutated during a sort

Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced by the built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is needed (such as allowing storage in a or instance)

class tuple([iterable])

Tuples may be constructed in a number of ways

  • Using a pair of parentheses to denote the empty tuple.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    48

  • Using a trailing comma for a singleton tuple.

    >>> (65).to_bytes()
    b'A'
    
    40 or
    >>> (65).to_bytes()
    b'A'
    
    41

  • Separating items with commas.

    >>> (65).to_bytes()
    b'A'
    
    42 or
    >>> (65).to_bytes()
    b'A'
    
    43

  • Using the built-in.

    >>> (65).to_bytes()
    b'A'
    
    44 or
    >>> (65).to_bytes()
    b'A'
    
    46

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For example,

>>> (65).to_bytes()
b'A'
47 returns
>>> (65).to_bytes()
b'A'
48 and
>>> (65).to_bytes()
b'A'
49 returns
>>> (65).to_bytes()
b'A'
50. If no argument is given, the constructor creates a new empty tuple,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example,

>>> (65).to_bytes()
b'A'
52 is a function call with three arguments, while
>>> (65).to_bytes()
b'A'
53 is a function call with a 3-tuple as the sole argument

Tuples implement all of the sequence operations

For heterogeneous collections of data where access by name is clearer than access by index, may be a more appropriate choice than a simple tuple object

Ranges

The type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in loops

class range(stop)class range(start , stop[ , step])

The arguments to the range constructor must be integers (either built-in or any object that implements the special method). If the step argument is omitted, it defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55. If the start argument is omitted, it defaults to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42. If step is zero, is raised

For a positive step, the contents of a range

>>> (65).to_bytes()
b'A'
62 are determined by the formula
>>> (65).to_bytes()
b'A'
63 where
>>> (65).to_bytes()
b'A'
64 and
>>> (65).to_bytes()
b'A'
65

Đối với bước phủ định, nội dung của phạm vi vẫn được xác định theo công thức

>>> (65).to_bytes()
b'A'
63, nhưng các ràng buộc là
>>> (65).to_bytes()
b'A'
64 và
>>> (65).to_bytes()
b'A'
68

A range object will be empty if

>>> (65).to_bytes()
b'A'
69 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than are permitted but some features (such as ) may raise

Range examples

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7

Ranges implement all of the sequence operations except concatenation and repetition (due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern)

start

The value of the start parameter (or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 if the parameter was not supplied)

stop

The value of the stop parameter

step

The value of the step parameter (or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 if the parameter was not supplied)

The advantage of the type over a regular or is that a object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the

>>> (65).to_bytes()
b'A'
79,
>>> (65).to_bytes()
b'A'
80 and
>>> (65).to_bytes()
b'A'
81 values, calculating individual items and subranges as needed)

Range objects implement the ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices (see )

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8

Testing range objects for equality with

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different , and attributes, for example
>>> (65).to_bytes()
b'A'
88 or
>>> (65).to_bytes()
b'A'
89. )

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define (instead of comparing based on object identity).

Mới trong phiên bản 3. 3. The , and attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type —

Textual data in Python is handled with objects, or strings. Strings are immutable of Unicode code points. String literals are written in a variety of ways

  • Single quotes.

    >>> (65).to_bytes()
    b'A'
    
    96

  • Dấu ngoặc kép.

    >>> (65).to_bytes()
    b'A'
    
    97

  • Ba trích dẫn.

    >>> (65).to_bytes()
    b'A'
    
    98,
    >>> (65).to_bytes()
    b'A'
    
    99

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
00

See for more about the various forms of string literal, including supported escape sequences, and the

>>> (65).to_bytes()
b'A'
62 (“raw”) prefix that disables most escape sequence processing

Strings may also be created from other objects using the constructor

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
03

There is also no mutable string type, but or can be used to efficiently construct strings from multiple fragments

Changed in version 3. 3. For backwards compatibility with the Python 2 series, the

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
06 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
>>> (65).to_bytes()
b'A'
62 prefix.

lớp str(đối tượng='')class str(object=b'', encoding='utf-8', errors='strict')

Return a version of object. If object is not provided, returns the empty string. Otherwise, the behavior of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33 depends on whether encoding or errors is given, as follows

If neither encoding nor errors is given,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
09 returns , which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a method, then falls back to returning

If at least one of encoding or errors is given, object should be a (e. g. or ). In this case, if object is a (or ) object, then

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
18 is equivalent to . Otherwise, the bytes object underlying the buffer object is obtained before calling . See and for information on buffer objects

Passing a object to without the encoding or errors arguments falls under the first case of returning the informal string representation (see also the command-line option to Python). For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9

For more information on the

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
22 class and its methods, see and the section below. To output formatted strings, see the and sections. In addition, see the section

String Methods

Strings implement all of the sequence operations, along with the additional methods described below

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see , and ) and the other based on C

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
26 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle ()

The section of the standard library covers a number of other modules that provide various text related utilities (including regular expression support in the module)

str. capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

str. casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
28 is equivalent to
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
29. Since it is already lowercase, would do nothing to
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
28; converts it to
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
29

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center(width[ , fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. count(sub[ , start[ , end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode(encoding='utf-8' , errors='strict')

Return the string encoded to

encoding defaults to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
36; see for possible values

errors controls how encoding errors are handled. If

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
37 (the default), a exception is raised. Other possible values are
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
39,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
40,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
41,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
42 and any other name registered via . See for details

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs, is enabled or a is used

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in and in .

str. endswith(suffix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string ends with the specified suffix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

str. expandtabs(tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab (

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
46), one or more space characters are inserted in the result until the current column is equal to the next tab position. (The tab character itself is not copied. ) If the character is a newline (
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
47) or return (
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
48), it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
0

str. find(sub[ , start[ , end]])

Return the lowest index in the string where substring sub is found within the slice

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 if sub is not found

Note

The method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the operator

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
1

str. format(*args , **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
2

See for a description of the various formatting options that can be specified in format strings

Note

When formatting a number (, , , and subclasses) with the

def bit_count(self):
    return bin(self).count("1")
51 type (ex.
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
59), the function temporarily sets the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale to the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale to decode
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
62 and
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
63 fields of
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
64 if they are non-ASCII or longer than 1 byte, and the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale is different than the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_count(self):
    return bin(self).count("1")
51 type, the function sets temporarily the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale to the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale in some cases.

str. format_map(mapping)

Similar to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
70, except that
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
71 is used directly and not copied to a . This is useful if for example
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
71 is a dict subclass

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
3

Mới trong phiên bản 3. 2

str. index(sub[ , start[ , end]])

Like , but raise when the substring is not found

str. isalnum()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. A character
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
78 is alphanumeric if one of the following returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56.
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
80,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
81,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
82, or
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
83

str. isalpha()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is a valid identifier according to the language definition, section

Call to test whether string

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
94 is a reserved identifier, such as and

Example

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
4

str. islower()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters in the string are lowercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

str. isnumeric()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Nonprintable characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those which should not be escaped when is invoked on a string. It has no bearing on the handling of strings written to or . )

str. isspace()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there are only whitespace characters in the string and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

A character is whitespace if in the Unicode character database (see ), either its general category is

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09 (“Separator, space”), or its bidirectional class is one of
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
10,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
11, or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
12

str. istitle()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

str. isupper()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters in the string are uppercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
5

str. join(iterable)

Return a string which is the concatenation of the strings in iterable. A will be raised if there are any non-string values in iterable, including objects. The separator between elements is the string providing this method

str. ljust(width[ , fillchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. lower()

Return a copy of the string with all the cased characters converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
6

See for a method that will remove a single prefix string rather than all of a set of characters. For example

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
7

static str. maketrans(x[ , y[ , z]])

This static method returns a translation table usable for

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31. Character keys will then be converted to ordinals

Nếu có hai đối số, chúng phải là các chuỗi có độ dài bằng nhau và trong từ điển kết quả, mỗi ký tự trong x sẽ được ánh xạ tới ký tự ở cùng vị trí trong y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 in the result

str. phân vùng(sep)

Tách chuỗi ở lần xuất hiện đầu tiên của sep và trả về 3-tuple chứa phần trước dấu phân cách, chính dấu phân cách và phần sau dấu phân cách. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix(prefix , /)

If the string starts with the prefix string, return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
25. Otherwise, return a copy of the original string

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
8

Mới trong phiên bản 3. 9

str. removesuffix(suffix , /)

If the string ends with the suffix string and that suffix is not empty, return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
26. Otherwise, return a copy of the original string

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
9

Mới trong phiên bản 3. 9

str. replace(old , new[ , count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind(sub[ , start[ , end]])

Return the highest index in the string where substring sub is found, such that sub is contained within

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 on failure

str. rindex(sub[ , start[ , end]])

Like but raises when the substring sub is not found

str. rjust(width[ , fillchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. rpartition(sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, any whitespace string is a separator. Except for splitting from the right, behaves like which is described in detail below

str. rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_count(self):
    return bin(self).count("1")
0

See for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_count(self):
    return bin(self).count("1")
1

str. split(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have at most

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37 elements). If maxsplit is not specified or
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
39 returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
40). The sep argument may consist of multiple characters (for example,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
41 returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
42). Splitting an empty string with a specified separator returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
43

For example

def bit_count(self):
    return bin(self).count("1")
2

If sep is not specified or is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 separator returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def bit_count(self):
    return bin(self).count("1")
3

str. splitlines(keepends=False)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of

Representation

Description

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
47

Line Feed

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
48

Carriage Return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
49

Carriage Return + Line Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
50 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
51

Line Tabulation

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
52 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
53

Form Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
54

File Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
55

Group Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
56

Record Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
57

Next Line (C1 Control Code)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
58

Line Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
59

Paragraph Separator

Changed in version 3. 2.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
50 and
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
52 added to list of line boundaries.

For example

def bit_count(self):
    return bin(self).count("1")
4

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_count(self):
    return bin(self).count("1")
5

For comparison,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
63 gives

def bit_count(self):
    return bin(self).count("1")
6

str. startswith(prefix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if string starts with the prefix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. dải([ký tự])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_count(self):
    return bin(self).count("1")
7

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_count(self):
    return bin(self).count("1")
8

str. hoán đổi()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not necessarily true that

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
67

str. title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_count(self):
    return bin(self).count("1")
9

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
0

The function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
1

str. translate(table)

Return a copy of the string in which each character has been mapped through the given translation table. The table must be an object that implements indexing via

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
69, typically a or . When indexed by a Unicode ordinal (an integer), the table object can do any of the following. return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, to delete the character from the return string; or raise a exception, to map the character to itself

You can use to create a translation map from character-to-character mappings in different formats

See also the module for a more flexible approach to custom character mappings

str. upper()

Return a copy of the string with all the cased characters converted to uppercase. Note that

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
74 might be
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 if
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
94 contains uncased characters or if the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase), but e. g. “Lt” (Letter, titlecase)

The uppercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. zfill(width)

Return a copy of the string left filled with ASCII

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 digits to make a string of length width. A leading sign prefix (
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78/
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

For example

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
2

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 26-style String Formatting

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer , the interface, or may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility

String objects have one unique built-in operation. the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 operator (modulo). This is also known as the string formatting or interpolation operator. Given
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
84 (where format is a string),
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 in the C language

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    90 (dot) followed by the precision. If specified as
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Công cụ sửa đổi độ dài (tùy chọn)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 character. The mapping key selects the value to be formatted from the mapping. For example

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
3

In this case no

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Nghĩa

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79

The converted value is left adjusted (overrides the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78

A sign character (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) will precede the conversion (overrides a “space” flag)

A length modifier (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
02,
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
03, or
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
04) may be present, but is ignored as it is not necessary for Python – so e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
05 is identical to
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
06

The conversion types are

Conversion

Nghĩa

ghi chú

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
10

Obsolete type – it is identical to

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

(6)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
20

Single character (accepts integer or single character string)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
21

Chuỗi (chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
23

Chuỗi (chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
25

Chuỗi (chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng)

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87

Không có đối số nào được chuyển đổi, dẫn đến một ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 trong kết quả

ghi chú

  1. Dạng thay thế làm cho một bộ xác định bát phân hàng đầu (_______128_______29) được chèn vào trước chữ số đầu tiên

  2. Dạng thay thế làm cho một số

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    30 hoặc
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    31 đứng đầu (tùy thuộc vào việc sử dụng định dạng
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    12 hay
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    13) trước chữ số đầu tiên

  3. Dạng thay thế khiến kết quả luôn chứa dấu thập phân, ngay cả khi không có chữ số nào theo sau nó

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34, the output is truncated to
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34 characters

  6. See PEP 237

Since Python strings have an explicit length,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
36 conversions do not assume that
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
37 is the end of the string

Changed in version 3. 1.

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
38 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
39 conversions.

Binary Sequence Types — , ,

The core built-in types for manipulating binary data are and . They are supported by which uses the to access the memory of other binary objects without needing to make a copy

The module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes([source[ , encoding[ , errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
47 prefix is added

  • Single quotes.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    48

  • Double quotes.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    49

  • Triple quoted.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    50,
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    51

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a

>>> (65).to_bytes()
b'A'
62 prefix to disable processing of escape sequences. See for more about the various forms of bytes literal, including supported escape sequences

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable sequences of integers, with each value in the sequence restricted such that

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
53 (attempts to violate this restriction will trigger ). This is done deliberately to emphasise that while many binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII compatible will usually lead to data corruption)

In addition to the literal forms, bytes objects can be created in a number of other ways

  • A zero-filled bytes object of a specified length.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    55

  • From an iterable of integers.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    56

  • Copying existing binary data via the buffer protocol.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    57

Also see the built-in

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format

classmethod fromhex(string)

This class method returns a bytes object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
4

Đã thay đổi trong phiên bản 3. 7. now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
5

If you want to make the hex string easier to read, you can specify a single character separator sep parameter to include in the output. By default, this separator will be included between each byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
6

New in version 3. 5

Changed in version 3. 8. now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
61 will be an integer, while
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
62 will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
63) since it is often more useful than e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
64. You can always convert a bytes object into a list of integers using
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
65

Bytearray Objects

objects are a mutable counterpart to objects

class bytearray([source[ , encoding[ , errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    68

  • Creating a zero-filled instance with a given length.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    69

  • Từ một số nguyên có thể lặp lại.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    70

  • Sao chép dữ liệu nhị phân hiện có thông qua giao thức bộ đệm.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    71

Vì các đối tượng mảng phụ có thể thay đổi, nên chúng hỗ trợ các hoạt động tuần tự ngoài các hoạt động byte và mảng phụ phổ biến được mô tả trong

Also see the built-in

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte đơn, số thập lục phân là định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Theo đó, kiểu bytearray có thêm một phương thức lớp để đọc dữ liệu ở định dạng đó

classmethod fromhex(string)

Phương thức lớp này trả về đối tượng bytearray, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên mỗi byte, bỏ qua khoảng trắng ASCII

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
7

Đã thay đổi trong phiên bản 3. 7. now skips all ASCII whitespace in the string, not just spaces.

Hàm chuyển đổi ngược tồn tại để chuyển đổi một đối tượng bytearray thành biểu diễn thập lục phân của nó

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
8

New in version 3. 5

Đã thay đổi trong phiên bản 3. 8. Tương tự như , giờ đây hỗ trợ các tham số sep và bytes_per_sep tùy chọn để chèn dấu phân cách giữa các byte trong đầu ra hex.

Vì các đối tượng bytearray là chuỗi các số nguyên (tương tự như một danh sách), đối với một đối tượng bytearray b,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
61 sẽ là một số nguyên, trong khi
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
62 sẽ là một đối tượng bytearray có độ dài 1. (Điều này trái ngược với các chuỗi văn bản, trong đó cả lập chỉ mục và cắt sẽ tạo ra một chuỗi có độ dài 1)

Việc biểu diễn các đối tượng bytearray sử dụng định dạng byte bằng chữ (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
78) vì nó thường hữu ích hơn e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
79. Bạn luôn có thể chuyển đổi một đối tượng bytearray thành một danh sách các số nguyên bằng cách sử dụng
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
65

Byte và hoạt động Bytearray

Cả hai đối tượng byte và bytearray đều hỗ trợ các hoạt động trình tự. Chúng tương tác với nhau không chỉ với các toán hạng cùng loại mà với bất kỳ. Do tính linh hoạt này, chúng có thể được trộn lẫn tự do trong các hoạt động mà không gây ra lỗi. Tuy nhiên, kiểu trả về của kết quả có thể phụ thuộc vào thứ tự của các toán hạng

Note

Các phương thức trên các đối tượng byte và bytearray không chấp nhận các chuỗi làm đối số của chúng, giống như các phương thức trên các chuỗi không chấp nhận các byte làm đối số của chúng. Ví dụ, bạn phải viết

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
9

>>> (65).to_bytes()
b'A'
0

Một số hoạt động byte và bytearray giả sử sử dụng định dạng nhị phân tương thích ASCII và do đó nên tránh khi làm việc với dữ liệu nhị phân tùy ý. Những hạn chế này được đề cập dưới đây

Note

Sử dụng các hoạt động dựa trên ASCII này để thao tác dữ liệu nhị phân không được lưu trữ ở định dạng dựa trên ASCII có thể dẫn đến hỏng dữ liệu

Có thể sử dụng các phương thức sau trên đối tượng byte và bytearray với dữ liệu nhị phân tùy ý

byte. đếm(phụ[ , . start[, end]])bytearray.đếm(phụ[ , start[, end]])

Trả về số lần xuất hiện không trùng lặp của subsequence sub trong phạm vi [bắt đầu, kết thúc]. Các đối số tùy chọn bắt đầu và kết thúc được diễn giải như trong ký hiệu lát cắt

Dãy con cần tìm có thể là bất kỳ hoặc một số nguyên trong khoảng từ 0 đến 255

Nếu phụ trống, trả về số lát trống giữa các ký tự là độ dài của đối tượng byte cộng với một

Đã thay đổi trong phiên bản 3. 3. Cũng chấp nhận một số nguyên trong khoảng từ 0 đến 255 làm dãy con.

byte. removeprefix(prefix , / . )bytearray.removeprefix(prefix , /)

Nếu dữ liệu nhị phân bắt đầu bằng chuỗi tiền tố, hãy trả về

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
81. Mặt khác, trả về một bản sao của dữ liệu nhị phân ban đầu

>>> (65).to_bytes()
b'A'
1

Tiền tố có thể là bất kỳ

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

Mới trong phiên bản 3. 9

byte. hậu tố loại bỏ(hậu tố , / . )bytearray.hậu tố loại bỏ(hậu tố , /)

Nếu dữ liệu nhị phân kết thúc bằng chuỗi hậu tố và hậu tố đó không trống, hãy trả về

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
82. Mặt khác, trả về một bản sao của dữ liệu nhị phân ban đầu

>>> (65).to_bytes()
b'A'
2

The suffix may be any

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

Mới trong phiên bản 3. 9

bytes. decode(encoding='utf-8' , errors='strict')bytearray. decode(encoding='utf-8' , errors='strict')

Return the bytes decoded to a

encoding defaults to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
36; see for possible values

errors controls how decoding errors are handled. If

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
37 (the default), a exception is raised. Other possible values are
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
39,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
40, and any other name registered via . See for details

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs, is enabled or a is used

Note

Passing the encoding argument to allows decoding any directly, without needing to make a temporary

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
23 or
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
24 object

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in and in .

bytes. endswith(suffix[ , start[ , end]])bytearray. endswith(suffix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the binary data ends with the specified suffix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The suffix(es) to search for may be any

bytes. find(sub[ , start[ , end]])bytearray. find(sub[ , start[ , end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 if sub is not found

Dãy con cần tìm có thể là bất kỳ hoặc một số nguyên trong khoảng từ 0 đến 255

Note

The method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the operator

>>> (65).to_bytes()
b'A'
3

Đã thay đổi trong phiên bản 3. 3. Cũng chấp nhận một số nguyên trong khoảng từ 0 đến 255 làm dãy con.

bytes. index(sub[ , start[ , end]])bytearray. index(sub[ , start[ , end]])

Like , but raise when the subsequence is not found

Dãy con cần tìm có thể là bất kỳ hoặc một số nguyên trong khoảng từ 0 đến 255

Đã thay đổi trong phiên bản 3. 3. Cũng chấp nhận một số nguyên trong khoảng từ 0 đến 255 làm dãy con.

bytes. join(iterable)bytearray. join(iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A will be raised if there are any values in iterable that are not , including objects. The separator between elements is the contents of the bytes or bytearray object providing this method

static bytes. maketrans(từ , đến . )static bytearray.maketrans(from , to)

Phương thức tĩnh này trả về một bảng dịch có thể sử dụng để ánh xạ từng ký tự từ thành ký tự ở cùng một vị trí thành;

Mới trong phiên bản 3. 1

bytes. partition(sep)bytearray. partition(sep)

Tách chuỗi ở lần xuất hiện đầu tiên của sep và trả về 3-bộ chứa phần trước dấu tách, chính dấu tách hoặc bản sao mảng phụ của nó và phần sau dấu tách. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

Dấu phân cách để tìm kiếm có thể là bất kỳ

byte. thay thế( , mới . [, count])bytearray.thay thế( , mới[, count])

Trả về một bản sao của chuỗi với tất cả các lần xuất hiện của chuỗi cũ được thay thế bằng mới. Nếu số lượng đối số tùy chọn được cung cấp, chỉ những lần xuất hiện đầu tiên được thay thế

Dãy con cần tìm và sự thay thế của nó có thể là bất kỳ

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. rfind(phụ[ , . start[, end]])bytearray.rfind(sub[ , start[, end]])

Trả về chỉ số cao nhất trong chuỗi nơi tìm thấy subsequence sub, như vậy sub đó được chứa trong

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Các đối số tùy chọn bắt đầu và kết thúc được diễn giải như trong ký hiệu lát cắt. Trả lại
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 khi thất bại

Dãy con cần tìm có thể là bất kỳ hoặc một số nguyên trong khoảng từ 0 đến 255

Đã thay đổi trong phiên bản 3. 3. Cũng chấp nhận một số nguyên trong khoảng từ 0 đến 255 làm dãy con.

byte. rindex(sub[ , . start[, end]])bytearray.rindex(sub[ , start[, end]])

Like nhưng tăng khi không tìm thấy sub nối tiếp

Dãy con cần tìm có thể là bất kỳ hoặc một số nguyên trong khoảng từ 0 đến 255

Đã thay đổi trong phiên bản 3. 3. Cũng chấp nhận một số nguyên trong khoảng từ 0 đến 255 làm dãy con.

byte. phân vùng(sep)bytearray. phân vùng(sep)

Tách chuỗi ở lần xuất hiện cuối cùng của sep và trả về 3-tuple chứa phần trước dấu tách, chính dấu tách hoặc bản sao mảng phụ của nó và phần sau dấu tách. Nếu không tìm thấy dấu tách, hãy trả về 3-bộ chứa hai byte trống hoặc đối tượng mảng phụ, theo sau là bản sao của chuỗi ban đầu

Dấu phân cách để tìm kiếm có thể là bất kỳ

byte. startswith(tiền tố[ , . start[, end]])bytearray.startswith(tiền tố[ , start[, end]])

Trả về

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu dữ liệu nhị phân bắt đầu bằng tiền tố đã chỉ định, nếu không thì trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. tiền tố cũng có thể là một bộ tiền tố cần tìm. Với bắt đầu tùy chọn, bắt đầu kiểm tra tại vị trí đó. Với đầu cuối tùy chọn, dừng so sánh tại vị trí đó

(Các) tiền tố để tìm kiếm có thể là bất kỳ

byte. dịch(bảng , / . , delete=b'')bytearray.dịch(bảng , /, delete=b'')

Trả về một bản sao của đối tượng byte hoặc bytearray trong đó tất cả các byte xuất hiện trong đối số tùy chọn xóa đều bị xóa và các byte còn lại đã được ánh xạ qua bảng dịch đã cho, phải là một đối tượng byte có độ dài 256

Bạn có thể sử dụng phương pháp để tạo bảng dịch

Đặt đối số bảng thành

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 cho các bản dịch chỉ xóa các ký tự

>>> (65).to_bytes()
b'A'
4

Đã thay đổi trong phiên bản 3. 6. xóa hiện được hỗ trợ làm đối số từ khóa.

Các phương thức sau trên các đối tượng byte và bytearray có các hành vi mặc định giả sử sử dụng các định dạng nhị phân tương thích ASCII, nhưng vẫn có thể được sử dụng với dữ liệu nhị phân tùy ý bằng cách chuyển các đối số thích hợp. Lưu ý rằng tất cả các phương thức bytearray trong phần này không hoạt động tại chỗ mà thay vào đó tạo ra các đối tượng mới

byte. trung tâm(chiều rộng[ , . fillbyte])bytearray.trung tâm(chiều rộng[ , fillbyte])

Trả về một bản sao của đối tượng được căn giữa theo thứ tự chiều dài chiều rộng. Quá trình đệm được thực hiện bằng cách sử dụng fillbyte đã chỉ định (mặc định là một không gian ASCII). Đối với các đối tượng, chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. ljust(chiều rộng[ , . fillbyte])bytearray.ljust(chiều rộng[ , fillbyte])

Trả về một bản sao của đối tượng còn lại được căn đều theo trình tự chiều dài chiều rộng. Quá trình đệm được thực hiện bằng cách sử dụng fillbyte đã chỉ định (mặc định là một không gian ASCII). Đối với các đối tượng, chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. lstrip([ký tự] . )bytearray.lstrip([ký tự])

Trả về một bản sao của chuỗi đã xóa các byte đầu được chỉ định. Đối số ký tự là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ bị xóa - tên đề cập đến thực tế là phương thức này thường được sử dụng với các ký tự ASCII. Nếu bỏ qua hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, đối số ký tự mặc định xóa khoảng trắng ASCII. Đối số ký tự không phải là tiền tố;

>>> (65).to_bytes()
b'A'
5

Chuỗi nhị phân của các giá trị byte cần loại bỏ có thể là bất kỳ. Xem phương pháp sẽ xóa một chuỗi tiền tố thay vì tất cả một bộ ký tự. Ví dụ

>>> (65).to_bytes()
b'A'
6

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. rjust(chiều rộng[ , . fillbyte])bytearray.rjust(chiều rộng[ , fillbyte])

Trả về một bản sao của đối tượng được căn phải theo thứ tự chiều dài chiều rộng. Quá trình đệm được thực hiện bằng cách sử dụng fillbyte đã chỉ định (mặc định là một không gian ASCII). Đối với các đối tượng, chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. rsplit(sep=Không có . , maxsplit=- 1)bytearray.rsplit(sep=Không có, maxsplit=- 1)

Tách chuỗi nhị phân thành các chuỗi con cùng loại, sử dụng sep làm chuỗi phân cách. Nếu maxsplit được đưa ra, thì tối đa các phần tách maxsplit được thực hiện, những phần ngoài cùng bên phải. Nếu sep không được chỉ định hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, thì bất kỳ dãy con nào chỉ bao gồm khoảng trắng ASCII đều là dấu phân cách. Ngoại trừ tách từ bên phải, hoạt động như được mô tả chi tiết bên dưới

byte. rstrip([ký tự] . )bytearray.rstrip([ký tự])

Trả về một bản sao của chuỗi đã xóa các byte theo sau được chỉ định. Đối số ký tự là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ bị xóa - tên đề cập đến thực tế là phương thức này thường được sử dụng với các ký tự ASCII. Nếu bỏ qua hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, đối số ký tự mặc định xóa khoảng trắng ASCII. Đối số ký tự không phải là một hậu tố;

>>> (65).to_bytes()
b'A'
7

Chuỗi nhị phân của các giá trị byte cần loại bỏ có thể là bất kỳ. Xem một phương thức sẽ loại bỏ một chuỗi hậu tố thay vì tất cả một bộ ký tự. Ví dụ

>>> (65).to_bytes()
b'A'
8

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. tách(sep=Không có . , maxsplit=- 1)bytearray.tách(sep=Không có, maxsplit=- 1)

Tách chuỗi nhị phân thành các chuỗi con cùng loại, sử dụng sep làm chuỗi phân cách. Nếu maxsplit được đưa ra và không âm, thì tối đa việc tách maxsplit được thực hiện (do đó, danh sách sẽ có tối đa

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37 phần tử). Nếu maxsplit không được chỉ định hoặc là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41, thì không có giới hạn về số lần phân tách (tất cả các lần phân tách có thể được thực hiện)

Nếu sep được đưa ra, các dấu phân cách liên tiếp không được nhóm lại với nhau và được coi là phân cách các chuỗi con trống (ví dụ:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
27 trả về
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
28). Đối số sep có thể bao gồm một chuỗi nhiều byte (ví dụ:
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
29 trả về
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
30). Việc tách một chuỗi trống với một dấu tách được chỉ định trả về
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
31 hoặc
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
32 tùy thuộc vào loại đối tượng được tách. Đối số sep có thể là bất kỳ

For example

>>> (65).to_bytes()
b'A'
9

Nếu sep không được chỉ định hoặc là

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, một thuật toán phân tách khác sẽ được áp dụng. các khoảng trắng ASCII liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa chuỗi trống ở đầu hoặc cuối nếu chuỗi có khoảng trắng ở đầu hoặc cuối. Do đó, việc tách một chuỗi trống hoặc một chuỗi chỉ bao gồm khoảng trắng ASCII mà không có dấu phân cách được chỉ định sẽ trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
0

byte. dải([ký tự] . )bytearray.dải([ký tự])

Trả về một bản sao của chuỗi đã xóa các byte đầu và cuối được chỉ định. Đối số ký tự là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ bị xóa - tên đề cập đến thực tế là phương thức này thường được sử dụng với các ký tự ASCII. Nếu bỏ qua hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, đối số ký tự mặc định xóa khoảng trắng ASCII. Đối số ký tự không phải là tiền tố hoặc hậu tố;

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
1

Chuỗi nhị phân của các giá trị byte cần loại bỏ có thể là bất kỳ

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. capitalize()bytearray. capitalize()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

bytes. expandtabs(tabsize=8)bytearray. expandtabs(tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
36), one or more space characters are inserted in the result until the current column is equal to the next tab position. (The tab character itself is not copied. ) If the current byte is an ASCII newline (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
37) or carriage return (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
38), it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless of how the byte value is represented when printed

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
2

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

bytes. isalnum()bytearray. isalnum()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
41. ASCII decimal digits are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
42

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
3

bytes. isalpha()bytearray. isalpha()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
41

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
4

bytes. isascii()bytearray. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit()bytearray. isdigit()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII decimal digits are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
42

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
5

bytes. islower()bytearray. islower()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
6

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

bytes. isspace()bytearray. không gian()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII whitespace characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
57 (space, tab, newline, carriage return, vertical tab, form feed)

bytes. istitle()bytearray. istitle()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the sequence is ASCII titlecase and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. See for more details on the definition of “titlecase”

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
7

bytes. isupper()bytearray. isupper()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII characters,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
8

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

bytes. lower()bytearray. lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
9

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

bytes. splitlines(keepends=False)bytearray. splitlines(keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
0

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
1

bytes. swapcase()bytearray. swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
2

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Unlike , it is always the case that

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
71 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

bytes. title()bytearray. title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
3

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
4

A workaround for apostrophes can be constructed using regular expressions

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
5

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

bytes. upper()bytearray. upper()

Trả về một bản sao của chuỗi với tất cả các ký tự ASCII chữ thường được chuyển đổi thành chữ hoa tương ứng của chúng

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
6

Lowercase ASCII characters are those byte values in the sequence

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Uppercase ASCII characters are those byte values in the sequence
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

byte. zfill(chiều rộng)bytearray. zfill(chiều rộng)

Trả lại một bản sao của chuỗi còn lại được điền bằng ASCII

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
76 chữ số để tạo một chuỗi có chiều dài chiều rộng. Tiền tố dấu hiệu ở đầu (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
77/
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
78) được xử lý bằng cách chèn phần đệm sau ký tự dấu hiệu thay vì trước. Đối với các đối tượng, chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
80

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
7

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

Định dạng byte kiểu 26 kiểu def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order)

Note

Các hoạt động định dạng được mô tả ở đây thể hiện nhiều điểm kỳ quặc dẫn đến một số lỗi phổ biến (chẳng hạn như không hiển thị chính xác các bộ dữ liệu và từ điển). If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects (

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
23/
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
24) have one unique built-in operation. the
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 operator (modulo). This is also known as the bytes formatting or interpolation operator. Given
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
84 (where format is a bytes object),
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 in the C language

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    90 (dot) followed by the precision. If specified as
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Công cụ sửa đổi độ dài (tùy chọn)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 character. The mapping key selects the value to be formatted from the mapping. For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
8

In this case no

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Nghĩa

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79

The converted value is left adjusted (overrides the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78

A sign character (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) will precede the conversion (overrides a “space” flag)

A length modifier (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
02,
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
03, or
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
04) may be present, but is ignored as it is not necessary for Python – so e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
05 is identical to
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
06

The conversion types are

Conversion

Nghĩa

ghi chú

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
10

Obsolete type – it is identical to

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

(số 8)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
20

Single byte (accepts integer or single byte objects)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
022

Bytes (any object that follows the or has

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
023)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
23

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
23 is an alias for
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
022 and should only be used for Python2/3 code bases

(6)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
25

Bytes (converts any Python object using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
028)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
21

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
21 is an alias for
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
25 and should only be used for Python2/3 code bases

(7)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87

Không có đối số nào được chuyển đổi, dẫn đến một ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 trong kết quả

ghi chú

  1. Dạng thay thế làm cho một bộ xác định bát phân hàng đầu (_______128_______29) được chèn vào trước chữ số đầu tiên

  2. Dạng thay thế làm cho một số

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    30 hoặc
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    31 đứng đầu (tùy thuộc vào việc sử dụng định dạng
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    12 hay
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    13) trước chữ số đầu tiên

  3. Dạng thay thế khiến kết quả luôn chứa dấu thập phân, ngay cả khi không có chữ số nào theo sau nó

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34, the output is truncated to
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34 characters

  6. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    041 is deprecated, but will not be removed during the 3. x series

  7. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    042 is deprecated, but will not be removed during the 3. x series

  8. See PEP 237

Note

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện

See also

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3. 5

Memory Views

objects allow Python code to access the internal data of an object that supports the without copying

class memoryview(object)

Create a that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include and

A has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as and , an element is a single byte, but other types such as may have bigger elements

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
051 is equal to the length of . If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
053, the length is 1. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The attribute will give you the number of bytes in a single element

A supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
9

If is one of the native format specifiers from the module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
0

Nếu đối tượng bên dưới có thể ghi được, chế độ xem bộ nhớ hỗ trợ gán lát cắt một chiều. Resizing is not allowed

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
1

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
059

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
2

Changed in version 3. 3. One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

Changed in version 3. 5. memoryviews can now be indexed with tuple of integers.

has several methods

__eq__(exporter)

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using syntax

For the subset of format strings currently supported by ,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
065 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
066 are equal if
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
067

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
3

If either format string is not supported by the module, then the objects will always compare as unequal (even if the format strings and buffer contents are identical)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
4

Note that, as with floating point numbers,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
069 does not imply
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
070 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes(order='C')

Return the data in the buffer as a bytestring. This is equivalent to calling the constructor on the memoryview

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
5

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes. supports all format strings, including those that are not in module syntax

New in version 3. 8. order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
6

New in version 3. 5

Đã thay đổi trong phiên bản 3. 8. Tương tự như , giờ đây hỗ trợ các tham số sep và bytes_per_sep tùy chọn để chèn dấu phân cách giữa các byte trong đầu ra hex.

tolist()

Return the data in the buffer as a list of elements

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
7

Changed in version 3. 3. now supports all single character native formats in module syntax as well as multi-dimensional representations.

toreadonly()

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
8

Mới trong phiên bản 3. 8

release()

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when a view is held on them (for example, a would temporarily forbid resizing); therefore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon as possible

After this method has been called, any further operation on the view raises a (except itself which can be called multiple times)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
9

Giao thức quản lý bối cảnh có thể được sử dụng cho hiệu ứng tương tự, sử dụng câu lệnh

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
0

Mới trong phiên bản 3. 2

cast(format[ , shape])

Truyền chế độ xem bộ nhớ sang định dạng hoặc hình dạng mới. shape defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
082, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- and C-contiguous -> 1D

The destination format is restricted to a single element native format in syntax. One of the formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length

Cast 1D/long to 1D/unsigned bytes

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
1

Cast 1D/unsigned bytes to 1D/char

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
2

Cast 1D/bytes to 3D/ints to 1D/signed char

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
3

Cast 1D/unsigned long to 2D/unsigned long

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
4

New in version 3. 3

Changed in version 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
5

New in version 3. 3

nbytes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
084. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
085

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
6

Multi-dimensional arrays

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
7

New in version 3. 3

readonly

A bool indicating whether the memory is read only

format

A string containing the format (in module style) for each element in the view. A memoryview can be created from exporters with arbitrary format strings, but some methods (e. g. ) are restricted to native single element formats

Changed in version 3. 3. format

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
088 is now handled according to the struct module syntax. This means that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
089.

itemsize

The size in bytes of each element of the memoryview

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
8

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents

shape

A tuple of integers the length of giving the shape of the memory as an N-dimensional array

Changed in version 3. 3. An empty tuple instead of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 when ndim = 0.

strides

A tuple of integers the length of giving the size in bytes to access each element for each dimension of the array

Changed in version 3. 3. An empty tuple instead of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 when ndim = 0.

suboffsets

Used internally for PIL-style arrays. Giá trị chỉ là thông tin

c_contiguous

A bool indicating whether the memory is C-

New in version 3. 3

f_contiguous

A bool indicating whether the memory is Fortran

New in version 3. 3

contiguous

A bool indicating whether the memory is

New in version 3. 3

Set Types — ,

A set object is an unordered collection of distinct objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. (For other containers see the built-in , , and classes, and the module. )

Like other collections, sets support

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
100,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
101, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
102. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior

There are currently two built-in set types, and . The type is mutable — the contents can be changed using methods like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
106 and
>>> (65).to_bytes()
b'A'
01. Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. The type is immutable and — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
109, in addition to the constructor

The constructors for both classes work the same

class set([iterable])class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be . To represent sets of sets, the inner sets must be objects. If iterable is not specified, a new empty set is returned

Sets can be created by several means

  • Use a comma-separated list of elements within braces.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    109

  • Use a set comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    113

  • Use the type constructor.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    115,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    116

Instances of and provide the following operations

len(s)

Return the number of elements in set s (cardinality of s)

x in s

Test x for membership in s

x not in s

Test x for non-membership in s

isdisjoint(other)

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set

issubset(other)set <= other

Test whether every element in the set is in other

set < other

Test whether the set is a proper subset of other, that is,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
120

issuperset(other)set >= other

Test whether every element in other is in the set

set > other

Test whether the set is a proper superset of other, that is,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
121

union(*others)set . other . .

Return a new set with elements from the set and all others

intersection(*others)set & other & .

Return a new set with elements common to the set and all others

difference(*others)set - other - .

Return a new set with elements in the set that are not in the others

symmetric_difference(other)set ^ other

Return a new set with elements in either the set or other but not both

bản sao()

Return a shallow copy of the set

Note, the non-operator versions of , , , , , and methods will accept any iterable as an argument. Ngược lại, các đối tác dựa trên toán tử của chúng yêu cầu các đối số của chúng được đặt. This precludes error-prone constructions like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
128 in favor of the more readable
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
129

Both and support set to set comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal)

Các trường hợp được so sánh với các trường hợp dựa trên các thành viên của chúng. For example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
134 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 and so does
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
136

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
138,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
139, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
140

Since sets only define partial ordering (subset relationships), the output of the method is undefined for lists of sets

Set elements, like dictionary keys, must be

Binary operations that mix instances with return the type of the first operand. For example.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 returns an instance of

The following table lists operations available for that do not apply to immutable instances of

update(*others)set . = other . .

Update the set, adding elements from all others

intersection_update(*others)set &= other & .

Update the set, keeping only elements found in it and all others

difference_update(*others)set -= other . .

Update the set, removing elements found in others

symmetric_difference_update(other)set ^= other

Update the set, keeping only elements found in either set, but not in both

add(elem)

Add element elem to the set

remove(elem)

Remove element elem from the set. Raises if elem is not contained in the set

discard(elem)

Remove element elem from the set if it is present

pop()

Remove and return an arbitrary element from the set. Raises if the set is empty

clear()

Remove all elements from the set

Note, the non-operator versions of the , , , and methods will accept any iterable as an argument

Note, the elem argument to the

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
00, , and methods may be a set. To support searching for an equivalent frozenset, a temporary one is created from elem

Mapping Types —

A object maps values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. (For other containers see the built-in , , and classes, and the module. )

A dictionary’s keys are almost arbitrary values. Values that are not , that is, values containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Values that compare equal (such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
163, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56) can be used interchangeably to index the same dictionary entry

class dict(**kwargs)class dict(mapping , **kwargs)class dict(iterable , **kwargs)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    165 pairs within braces.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    166 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    167

  • Use a dict comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    169

  • Use the type constructor.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    170,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    171,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    172

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

To illustrate, the following examples all return a dictionary equal to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
173

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
9

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise, any valid keys can be used

These are the operations that dictionaries support (and therefore, custom mapping types should support too)

list(d)

Return a list of all the keys used in the dictionary d

len(d)

Return the number of items in the dictionary d

d[key]

Return the item of d with key key. Raises a if key is not in the map

If a subclass of dict defines a method

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175 and key is not present, the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 operation calls that method with the key key as argument. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 operation then returns or raises whatever is returned or raised by the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
178 call. No other operations or methods invoke
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175 is not defined, is raised.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175 must be a method; it cannot be an instance variable

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
00

The example above shows part of the implementation of . A different

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
184 method is used by

d[key] = value

Set

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 to value

del d[key]

Remove

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 from d. Raises a if key is not in the map

key in d

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if d has a key key, else
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

key not in d

Equivalent to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
191

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
192

clear()

Remove all items from the dictionary

bản sao()

Return a shallow copy of the dictionary

classmethod fromkeys(iterable[ , value])

Create a new dictionary with keys from iterable and values set to value

is a class method that returns a new dictionary. value defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31. All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list. To get distinct values, use a instead

get(key[ , default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, so that this method never raises a

items()

Return a new view of the dictionary’s items (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 pairs). See the

keys()

Return a new view of the dictionary’s keys. See the

pop(key[ , default])

Nếu khóa nằm trong từ điển, hãy xóa nó và trả về giá trị của nó, nếu không thì trả về giá trị mặc định. If default is not given and key is not in the dictionary, a is raised

popitem()

Xóa và trả về cặp

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 từ từ điển. Pairs are returned in LIFO order

rất hữu ích để lặp lại triệt để một từ điển, như thường được sử dụng trong các thuật toán tập hợp. If the dictionary is empty, calling raises a

Changed in version 3. 7. LIFO order is now guaranteed. In prior versions, would return an arbitrary key/value pair.

reversed(d)

Return a reverse iterator over the keys of the dictionary. This is a shortcut for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
204

Mới trong phiên bản 3. 8

setdefault(key[ , default])

If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

update([other])

Update the dictionary with the key/value pairs from other, overwriting existing keys. Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value pairs.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
208

giá trị()

Return a new view of the dictionary’s values. See the

An equality comparison between one

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
209 view and another will always return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. This also applies when comparing
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
209 to itself

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
01

d . other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries. The values of other take priority when d and other share keys

Mới trong phiên bản 3. 9

d . = other

Update the dictionary d with keys and values from other, which may be either a or an of key/value pairs. The values of other take priority when d and other share keys

Mới trong phiên bản 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 pairs (regardless of ordering). Order comparisons (‘<’, ‘<=’, ‘>=’, ‘>’) raise .

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion are inserted at the end

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
02

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3. 6.

Dictionaries and dictionary views are reversible

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
03

Changed in version 3. 8. Dictionaries are now reversible.

See also

can be used to create a read-only view of a

Dictionary view objects

The objects returned by , and are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes

Dictionary views can be iterated over to yield their respective data, and support membership tests

len(dictview)

Return the number of entries in the dictionary

iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197) in the dictionary

Keys and values are iterated over in insertion order. This allows the creation of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
220 pairs using .
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
222. Another way to create the same list is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
223

Iterating views while adding or deleting entries in the dictionary may raise a or fail to iterate over all entries

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order.

x in dictview

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 tuple)

reversed(dictview)

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order of the insertion

Changed in version 3. 8. Dictionary views are now reversible.

dictview. mapping

Return a that wraps the original dictionary to which the view refers

Mới trong phiên bản 3. 10

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 pairs are unique and hashable, then the items view is also set-like. (Chế độ xem giá trị không được coi là giống như tập hợp vì các mục thường không phải là duy nhất. ) For set-like views, all of the operations defined for the abstract base class are available (for example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
232)

An example of dictionary view usage

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
04

Context Manager Types

Python’s statement supports the concept of a runtime context defined by a context manager. This is implemented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends

contextmanager. __enter__()

Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
234 clause of statements using this context manager

An example of a context manager that returns itself is a . File objects return themselves from __enter__() to allow to be used as the context expression in a statement

An example of a context manager that returns a related object is the one returned by . These managers set the active decimal context to a copy of the original decimal context and then return the copy. This allows changes to be made to the current decimal context in the body of the statement without affecting code outside the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081 statement

contextmanager. __exit__(exc_type , exc_val , exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. If an exception occurred while executing the body of the statement, the arguments contain the exception type, value and traceback information. Otherwise, all three arguments are

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Returning a true value from this method will cause the statement to suppress the exception and continue execution with the statement immediately following the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081 statement. Otherwise the exception continues propagating after this method has finished executing. Exceptions that occur during execution of this method will replace any exception that occurred in the body of the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081 statement

The exception passed in should never be reraised explicitly - instead, this method should return a false value to indicate that the method completed successfully and does not want to suppress the raised exception. This allows context management code to easily detect whether or not an method has actually failed

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond their implementation of the context management protocol. See the module for some examples

Python’s s and the decorator provide a convenient way to implement these protocols. If a generator function is decorated with the decorator, it will return a context manager implementing the necessary and methods, rather than the iterator produced by an undecorated generator function

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API. Các loại tiện ích mở rộng muốn xác định các phương thức này phải cung cấp chúng như một phương thức truy cập Python thông thường. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible

Nhập các loại chú thích — ,

The core built-in types for are and

Generic Alias Type

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objects are generally created by a class. They are most often used with , such as or . For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
255 is a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 object created by subscripting the
def bit_count(self):
    return bin(self).count("1")
93 class with the argument .
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objects are intended primarily for use with

Note

It is generally only possible to subscript a class if the class implements the special method

Một đối tượng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 hoạt động như một proxy cho một , triển khai các generic được tham số hóa

Đối với một lớp chứa, (các) đối số được cung cấp cho một lớp có thể chỉ ra (các) loại phần tử mà một đối tượng chứa. For example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
262 can be used in type annotations to signify a in which all the elements are of type

For a class which defines but is not a container, the argument(s) supplied to a subscription of the class will often indicate the return type(s) of one or more methods defined on an object. For example, can be used on both the data type and the data type

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    269,
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    82 will be a object where the return values of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    271 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    272 will both be of type . We can represent this kind of object in type annotations with the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    252
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    275

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    276, (note the
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    47 for ),
    def bit_count(self):
        return bin(self).count("1")
    
    31 will also be an instance of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    280, but the return values of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    281 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    282 will both be of type . In type annotations, we would represent this variety of objects with
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    284

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objects are instances of the class , which can also be used to create
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objects directly

T[X, Y, . ]

Creates a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 representing a type
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
289 parameterized by types X, Y, and more depending on the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
289 used. For example, a function expecting a containing elements

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
05

Another example for objects, using a , which is a generic type expecting two type parameters representing the key type and the value type. Trong ví dụ này, hàm mong đợi một

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
68 với các khóa thuộc loại và các giá trị thuộc loại

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
06

The builtin functions and do not accept

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 types for their second argument

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
07

The Python runtime does not enforce . This extends to generic types and their type parameters. When creating a container object from a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
08

Furthermore, parameterized generics erase type parameters during object creation

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
09

Calling or on a generic shows the parameterized type

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
10

The method of generic containers will raise an exception to disallow mistakes like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
304

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
11

However, such expressions are valid when are used. The index must have as many elements as there are type variable items in the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 object’s

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
12

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive

Special Attributes of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objects

All parameterized generics implement special read-only attributes

genericalias. __origin__

This attribute points at the non-parameterized generic class

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
13

genericalias. __args__

This attribute is a (possibly of length 1) of generic types passed to the original of the generic class

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
14

genericalias. __parameters__

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
306

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
15

Note

A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 object with parameters may not have correct
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
365 after substitution because is intended primarily for static type checking

genericalias. __unpacked__

A boolean that is true if the alias has been unpacked using the

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 operator (see )

New in version 3. 11

See also

PEP 484 - Type Hints

Introducing Python’s framework for type annotations

PEP 585 - Type Hinting Generics In Standard Collections

Introducing the ability to natively parameterize standard-library classes, provided they implement the special class method

, and

Documentation on how to implement generic classes that can be parameterized at runtime and understood by static type-checkers

Mới trong phiên bản 3. 9

Union Type

A union object holds the value of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
371 (bitwise or) operation on multiple . These types are intended primarily for . The union type expression enables cleaner type hinting syntax compared to

X . Y . .

Defines a union object which holds types X, Y, and so forth.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
373 means either X or Y. It is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
374. Ví dụ: hàm sau mong đợi một đối số kiểu hoặc

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
16

union_object == other

Union objects can be tested for equality with other union objects. Details

  • Unions of unions are flattened

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    17

  • Redundant types are removed

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    18

  • When comparing unions, the order is ignored

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    19

  • It is compatible with

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    20

  • Optional types can be spelled as a union with

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    21

isinstance(obj, union_object)issubclass(obj, union_object)

Calls to and are also supported with a union object

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
22

However, union objects containing cannot be used

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
23

The user-exposed type for the union object can be accessed from and used for checks. An object cannot be instantiated from the type

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
24

Note

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
383 method for type objects was added to support the syntax
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
373. If a metaclass implements
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
383, the Union may override it

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
25

See also

PEP 604 – PEP proposing the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
373 syntax and the Union type

Mới trong phiên bản 3. 10

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations

Modules

The only special operation on a module is attribute access.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
387, where m is a module and name accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the statement is not, strictly speaking, an operation on a module object;
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
389 does not require a module object named foo to exist, rather it requires an (external) definition for a module named foo somewhere. )

A special attribute of every module is . This is the dictionary containing the module’s symbol table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the attribute is not possible (you can write

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
392, which defines
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
393 to be
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55, but you can’t write
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
395). Modifying directly is not recommended

Modules built into the interpreter are written like this.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
397. If loaded from a file, they are written as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
398

Classes and Class Instances

See and for these

Functions

Function objects are created by function definitions. The only operation on a function object is to call it.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
399

There are really two flavors of function objects. built-in functions and user-defined functions. Both support the same operation (to call the function), but the implementation is different, hence the different object types

See for more information

Methods

Methods are functions that are called using the attribute notation. There are two flavors. built-in methods (such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
400 on lists) and class instance methods. Các phương thức tích hợp được mô tả với các loại hỗ trợ chúng

If you access a method (a function defined in a class namespace) through an instance, you get a special object. a bound method (also called instance method) object. When called, it will add the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
401 argument to the argument list. Bound methods have two special read-only attributes.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
402 is the object on which the method operates, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
403 is the function implementing the method. Calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
404 is completely equivalent to calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
405

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are actually stored on the underlying function object (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
406), setting method attributes on bound methods is disallowed. Attempting to set an attribute on a method results in an being raised. In order to set a method attribute, you need to explicitly set it on the underlying function object

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
26

See for more information

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function body. They differ from function objects because they don’t contain a reference to their global execution environment. Code objects are returned by the built-in function and can be extracted from function objects through their

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
409 attribute. See also the module

Accessing

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
409 raises an
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
412 with arguments
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
413 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
414

A code object can be executed or evaluated by passing it (instead of a source string) to the or built-in functions

See for more information

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function . There are no special operations on types. The standard module defines names for all standard built-in types

Types are written like this.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
419

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly one null object, named

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 (a built-in name).
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
421 produces the same singleton

It is written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

The Ellipsis Object

Đối tượng này thường được sử dụng bằng cách cắt (xem ). It supports no special operations. There is exactly one ellipsis object, named (a built-in name).

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
424 produces the singleton

It is written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
423 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
427

The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they don’t support. See for more information. There is exactly one

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
428 object.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
429 produces the singleton instance

It is written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
428

Boolean Values

Boolean values are the two constant objects

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56. They are used to represent truth values (although other values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function can be used to convert any value to a Boolean, if the value can be interpreted as a truth value (see section above)

They are written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, respectively

Internal Objects

See for this information. It describes stack frame objects, traceback objects, and slice objects

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these are not reported by the built-in function

object. __dict__

Từ điển hoặc đối tượng ánh xạ khác được sử dụng để lưu trữ các thuộc tính (có thể ghi) của đối tượng

instance. __class__

The class to which a class instance belongs

class. __bases__

The tuple of base classes of a class object

definition. __name__

The name of the class, function, method, descriptor, or generator instance

definition. __qualname__

The of the class, function, method, descriptor, or generator instance

New in version 3. 3

class. __mro__

This attribute is a tuple of classes that are considered when looking for base classes during method resolution

class. mro()

This method can be overridden by a metaclass to customize the method resolution order for its instances. Nó được gọi khi khởi tạo lớp và kết quả của nó được lưu trữ trong

lớp. __phân lớp__()

Mỗi lớp giữ một danh sách các tham chiếu yếu đến các lớp con trực tiếp của nó. Phương thức này trả về một danh sách tất cả các tham chiếu vẫn còn tồn tại. Danh sách theo thứ tự định nghĩa. Ví dụ

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
27

Giới hạn độ dài chuyển đổi chuỗi số nguyên

CPython có giới hạn toàn cầu để chuyển đổi giữa và để giảm thiểu các cuộc tấn công từ chối dịch vụ. Giới hạn này chỉ áp dụng cho cơ số thập phân hoặc cơ số không phải lũy thừa hai. Chuyển đổi thập lục phân, bát phân và nhị phân là không giới hạn. Giới hạn có thể được cấu hình

Loại trong Python là một số có độ dài tùy ý được lưu trữ ở dạng nhị phân (thường được gọi là “bignum”). Không tồn tại thuật toán nào có thể chuyển đổi một chuỗi thành một số nguyên nhị phân hoặc một số nguyên nhị phân thành một chuỗi trong thời gian tuyến tính, trừ khi cơ số là lũy thừa của 2. Ngay cả các thuật toán được biết đến nhiều nhất cho cơ số 10 cũng có độ phức tạp bậc hai. Chuyển đổi một giá trị lớn chẳng hạn như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
441 có thể mất hơn một giây trên CPU nhanh

Giới hạn kích thước chuyển đổi cung cấp một cách thiết thực để tránh CVE-2020-10735

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion algorithm would be involved. Underscores and the sign are not counted towards the limit

When an operation would exceed the limit, a is raised

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
28

The default limit is 4300 digits as provided in . The lowest limit that can be configured is 640 digits as provided in

Verification

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
29

New in version 3. 11

Affected APIs

The limitation only applies to potentially slow conversions between and or

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    448 with default base 10

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    449 for all bases that are not a power of 2

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    450

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    451

  • any other string conversion to base 10, for example

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    452,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    453, or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    454

The limitations do not apply to functions with a linear algorithm

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    449 with base 2, 4, 8, 16, or 32

  • and

  • , ,

  • for hex, octal, and binary numbers

  • to

  • to

Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit

  • , e. g.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    466 to set the limit to 640 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    467 to disable the limitation

  • , e. g.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    469

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    470 contains the value of or . If both the env var and the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    473 option are set, the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    473 option takes precedence. A value of -1 indicates that both were unset, thus a value of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    443 was used during initialization

From code, you can inspect the current limit and set a new one using these APIs

  • and are a getter and setter for the interpreter-wide limit. Subinterpreters have their own limit

Information about the default and minimum can be found in

  • is the compiled-in default limit

  • is the lowest accepted value for the limit (other than 0 which disables it)

New in version 3. 11

Caution

Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup time or import time or even at installation time - anytime an up to date

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
482 does not already exist for the code. A workaround for source that contains such large constants is to convert them to
def bit_count(self):
    return bin(self).count("1")
12 hexadecimal form as it has no limit

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the environment or flag so that it applies during startup and even during any installation step that may invoke Python to precompile

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
484 sources to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
482 files

The default

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
443 is expected to be reasonable for most applications. If your application requires a different limit, set it from your main entry point using Python version agnostic code as these APIs were added in security patch releases in versions before 3. 11

Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
30

If you need to disable it entirely, set it to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

Footnotes

Additional information on these special methods may be found in the Python Reference Manual ()

As a consequence, the list

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
488 is considered equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
489, and similarly for tuples

They must have since the parser can’t tell the type of the operands

4(,,,)

Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “Ll” (Letter, lowercase), or “Lt” (Letter, titlecase)

5(,)

To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted

Làm cách nào để kiểm tra xem một danh sách có chứa một chuỗi cụ thể trong Python không?

Check if the Python list contains an element using in operator . The most convenient way to check whether the list contains the element is using the in operator. Without sorting the list in any particular order, it returns TRUE if the element is there, otherwise FALSE.

Can I use str () on list?

Hàm str() trong python dùng để biến một giá trị thành chuỗi. Câu trả lời đơn giản cho chức năng của str() đối với một danh sách là nó tạo ra một chuỗi đại diện cho danh sách (dấu ngoặc vuông và tất cả).