Why should your feet be shoulder width apart when lifting?

Precautions you can take and legal obligations you must follow when requiring employees to engage in manual handling tasks

Any activity that requires an individual to lift, move or support a load is classified as a manual handling task. The Manual Handling Operations Regulations 1992 define it as 'any transporting or supporting of a load (including the lifting, putting down, pushing, pulling, carrying or moving thereof) by hand or by bodily force'.

  1. Manual handling risk assessment
  2. Controlling manual handling risks
  3. Good lifting technique
  4. Manual handling legal obligations

3. ​Good lifting technique

Follow these basic principles of manual handling when dealing with basic manual handling tasks.

  1. Pre task checks: ensure that the object is light enough to lift, is stable and unlikely to shift or move. Also make sure that the route is clear and that there is somewhere to put the load down wherever it is to be moved to.

  2. Positioning your feet: Keep your feet apart, giving a balanced and stable base for lifting (tight skirts and unsuitable footwear make this difficult). Your leading leg should be as far forward as is comfortable and, if possible, pointing in the direction you intend to go.

  3. Adopting a good posture: When lifting from a low level, bend your knees. Keep your back straight, maintaining its natural curve. Keep your shoulders level and facing in the same direction as your hips.

  4. Getting a firm grip: Try to keep your arms within the boundary formed by your legs. When holding on to something, a hook grip is less tiring than keeping your fingers straight. If you need to change your grip as you continue to lift the object, do this as smoothly as possible.

  5. Keeping close to the load: Keep the load close to your body for as long as possible, with the heaviest side of the load towards you. If you can't get close to the load at first, slide it towards you before you try to lift it.

  6. Lifting smoothly: Raise your chin as you begin the lift, keeping control of the load.

  7. Moving your feet: If you have to turn, move your feet - don't twist your trunk.

  8. Putting it down, then adjusting it: If you need to put the load in a particular position, put it down first, then slide it into the desired position.

Chapter 3. Safe Patient Handling, Positioning, and Transfers

Body mechanics involves the coordinated effort of muscles, bones, and the nervous system to maintain balance, posture, and alignment during moving, transferring, and positioning patients. Proper body mechanics allows individuals to carry out activities without excessive use of energy, and helps prevent injuries for patients and health care providers (Perry, Potter, & Ostendorf, 2014).

Musculoskeletal Injuries

A musculoskeletal injury (MSI) is an injury or disorder of the muscles, tendons, ligaments, joints or nerves, blood vessels, or related soft tissue including a sprain, strain, or inflammation related to a work injury. MSIs are the most common health hazard for health care providers (WorkSafeBC, 2013). Table 3.1 lists risk factors that contribute to an MSI.

Table 3.1 Factors That Contribute to an MSI

Factor

Special Information

Ergonomic risk factors Repetitive or sustained awkward postures, repetition, or forceful exertion
Individual risk factors Poor work practice; poor overall health (smoking, drinking alcohol, and obesity); poor rest and recovery; poor fitness, hydration, and nutrition
Data source: Perry et al., 2014; Workers Compensation Board, 2001; WorkSafeBC, 2013

When health care providers are exposed to ergonomic risk factors, they become fatigued and risk musculoskeletal imbalance. Additional exposure related to individual risk factors puts health care providers at increased risk for an MSI (WorkSafeBC, 2013). Preventing an MSI is achieved by understanding the elements of body mechanics, applying the principles of body mechanics to all work-related activities, understanding how to assess a patient’s ability to position or transfer, and learning safe handling transfers and positioning techniques.

Elements of Body Mechanics

Body movement requires coordinated muscle activity and neurological integration. It involves the basic elements of body alignment (posture), balance, and coordinated movement. Body alignment and posture bring body parts into position to promote optimal balance and body function. When the body is well aligned, whether standing, sitting, or lying, the strain on the joints, muscles, tendons, and ligaments is minimized (WorkSafeBC, 2013).

Body alignment is achieved by placing one body part in line with another body part in a vertical or horizontal line. Correct alignment contributes to body balance and decreases strain on muscle-skeletal structures. Without this balance, the risk of falls and injuries increase. In the language of body mechanics, the centre of gravity is the centre of the weight of an object or person. A lower centre of gravity increases stability. This can be achieved by bending the knees and bringing the centre of gravity closer to the base of support, keeping the back straight. A wide base of support is the foundation for stability. A wide base of support is achieved by placing feet a comfortable, shoulder width distance apart. When a vertical line falls from the centre of gravity through the wide base of support, body balance is achieved. If the vertical line moves outside the base of support, the body will lose balance.

The diagram in Figure 3.1 demonstrates (A) a well-aligned person whose balance is maintained and whose line of gravity falls within the base of support. Diagram (B) demonstrates how balance is not maintained when the line of gravity falls outside the base of support, and diagram (C) shows how balance is regained when the line of gravity falls within the base of support.

Why should your feet be shoulder width apart when lifting?
Figure 3.1 Centre of gravity

Principles of Body Mechanics

Table 3.2 describes the principles of body mechanics that should be applied during all patient-handling activities.

Table 3.2 Principles of Body Mechanics
Action Principle
Assess the environment. Assess the weight of the load before lifting and determine if assistance is required.
Plan the move. Plan the move; gather all supplies and clear the area of obstacles.
Avoid stretching and twisting. Avoid stretching, reaching, and twisting, which may place the line of gravity outside the base of support.
Ensure proper body stance. Keep stance (feet) shoulder-width apart.

Tighten abdominal, gluteal, and leg muscles in anticipation of the move.

Stand up straight to protect the back and provide balance.

Stand close to the object being moved. Place the weight of the object being moved close to your centre of gravity for balance.

Equilibrium is maintained as long as the line of gravity passes through its base of support.

Why should your feet be shoulder width apart when lifting?
Hold objects close to your centre of gravity
Face direction of the movement. Facing the direction prevents abnormal twisting of the spine.
Avoid lifting. Turning, rolling, pivoting, and leverage requires less work than lifting.

Do not lift if possible; use mechanical lifts as required.

Encourage the patient to help as much as possible.

Work at waist level. Keep all work at waist level to avoid stooping.

Raise the height of the bed or object if possible.

Do not bend at the waist.

Reduce friction between surfaces. Reduce friction between surfaces so that less force is required to move the patient.
Bend the knees. Bending the knees maintains your centre of gravity and lets the strong muscles of your legs do the lifting.
Push the object rather than pull it, and maintain continuous movement. It is easier to push an object than to pull it.

Less energy is required to keep an object moving than it is to stop and start it.

Use assistive devices. Use assistive devices (gait belt, slider boards, mechanical lifts) as required to position patients and transfer them from one surface to another.
Work with others. The person with the heaviest load should coordinate all the effort of the others involved in the handling technique.
Data source: Berman & Snyder, 2016; Perry et al., 2014; WorkSafeBC, 2013

Assistive Devices

An assistive device is an object or piece of equipment designed to help a patient with activities of daily living, such as a walker, cane, gait belt, or mechanical lift (WorkSafeBC, 2006). Table 3.3 lists some assistive devices found in the hospital and community setting.

Table 3.3 Assistive Devices
Type Definition
Gait belt or transfer belt Used to ensure a good grip on unstable patients. The device provides more stability when transferring patients. It is a 2-inch-wide (5 mm) belt, with or without handles, that is placed around a patient’s waist and fastened with Velcro. The gait belt must always be applied on top of clothing or gown to protect the patient’s skin. A gait belt can be used with patients in both one-person or two-person pivot transfer, or in transfer with a slider board.
Why should your feet be shoulder width apart when lifting?
Gait belt
Slider board or transfer board
Why should your feet be shoulder width apart when lifting?
Slider board (red) on a stretcher
Why should your feet be shoulder width apart when lifting?
Placing a slider board (transfer board) under a patient

A slider board is used to transfer immobile patients from one surface to another while the patient is lying supine. The board allows health care providers to safely move immobile, bariatric, or complex patients.

Mechanical lift A mechanical lift is a hydraulic lift, usually attached to a ceiling, used to move patients who cannot bear weight, who are unpredictable or unreliable, or who have a medical condition that does not allow them to stand or assist with moving.
Why should your feet be shoulder width apart when lifting?
Mechanical lift
Data source: Perry et al., 2014; WorkSafeBC, 2006

Video 3.1

Special considerations:
  • Use assistive devices only if properly trained in their safe use.
  • Always tell patients what you are about to do and how they should assist you in the procedure.
  • Always perform a patient risk assessment or mobility assessment prior to using any assistive devices. The following link provides additional information regarding assistive devices from WorkSafeBC.
  • Use proper body mechanics when using assistive devices.

  1. How do body alignment and body balance contribute to proper body mechanics?
  2. John is asked to lift a heavy box from a table onto a trolley. Name five principles of body mechanics John can implement to prevent an MSI.

Why should your feet be shoulder width apart when lifting prevents you from dropping the item helps you maintain balance keeps you from breaking the item?

Keeping your legs at least shoulder-width apart with one foot slightly forward will help you maintain a strong position before lifting. Keeping your legs too close together will make you far more like to topple and lose your balance.

When standing Your feet should be shoulder width apart?

Keep your feet about shoulder-width apart. Let your arms hang naturally down the sides of the body. Stand straight and tall with your shoulders pulled backward.

How far apart should your feet be to provide a wide base of support?

A wide base of support is stable – spread the feet at or greater than shoulder-width apart – but keep in mind that having the feet in a scissor position, with one foot forward and one foot backward, also offers a wide base of support.

Where should you bend your body when lifting from the floor?

Bend at your knees, not at your waist or back. Tighten your stomach muscles as you lift the object up or lower it down. Hold the object as close to your body as you can. Slowly lift, using your muscles in your hips and knees.